Publications

(Only peer reviewed full articles are listed)

Last update February 2021

2021 Publications (counting)

1. Avar, B., T. Simsek, S. Ozcan, A.K. Chattopadhyay, and B. Kalkan, “Structural stability of mechanically alloyed amorphous (FeCoNi)70Ti10B20 under high-temperature and high-pressure,” J. Alloys Cmpd. 860, 158528 (2021). (doi:10.1016/j.jallcom.2020.158528) 12.2.2


2. Bekheet, M.F., P. Delir Kheyrollahi Nezhad, N. Bonmassar, L. Schlicker, A. Gili, S. Praetz, A. Gurlo, A. Doran, Y. Gao, M. Heggen, A. Niaei, A. Farzi, S. Schwarz, J. Bernardi, B. Klötzer, and S. Penner, “Steering the Methane Dry Reforming Reactivity of Ni/La2O3 Catalysts by Controlled In Situ Decomposition of Doped La2NiO4 Precursor Structures,” ACS Catalysis 11(1), 43-59 (2021). (doi:10.1021/acscatal.0c04290) 12.2.2


3. Chandler, B., J. Bernier, M. Diamond, M. Kunz, and H.-R. Wenk, “Exploring microstructures in lower mantle mineral assemblages with synchrotron x-rays,” Science Advances 7(1), eabd3614 (2021). (doi:10.1126/sciadv.abd3614) 12.2.2


4. Daviau, K., R.A. Fischer, M.C. Brennan, J. Dong, T. Suer, S. Couper, Y. Meng, and V.B. Prakapenka, “Equation of state of TiN at high pressures and temperatures: A possible host for nitrogen in planetary mantles,” J Geophys Res Solid Earth 126(2), e2020JB020074 (2021). (doi:10.1029/2020JB020074) 12.2.2


5. Dupuis, R., J. Moon, Y. Jeong, R. Taylor, S.-H. Kang, H. Manzano, A. Ayuela, P.M. Monteiro, and J.S. Dolado, “Normal and anomalous self-healing mechanism of crystalline calcium silicate hydrates,” Cement Contrete Res. 142, 106356 (2021). (doi:10.1016/j.cemconres.2021.106356) 12.2.2


6. Nezhad, P.D., M.F. Bekheet, N. Bonmassar, L. Schlicker, A. Gili, F. Kamutzki, A. Gurlo, A. Doran, Y. Gao, M. Heggen, S. Schwarz, J. Bernardi, A. Niaei, A. Farzi, B. Klötzer, and S. Penner, “Mechanistic in situ insights into the formation, structural and catalytic aspects of the La2NiO4 intermediate phase in the dry reforming of methane over Ni-based perovskite catalysts,” Appl. Catal., A 612, 117984 (2021). (doi:10.1016/j.apcata.2020.117984) 12.2.2


7. Yan, J., A. Doran, A.A. MacDowell, and B. Kalkan, “A tungsten external heater for BX90 diamond anvil cells with a range up to 1700 K,” Rev. Sci. Instrum. 92(1), 013903 (2021). (doi:10.1063/5.0009663) 12.2.2


8. Yin, Z., H. Lou, H. Sheng, Z. Zeng, W.L. Mao, and Q. Zeng, “Polyamorphism in a solute-lean Al-Ce metallic glass,” J. Appl. Phys. 129(2), 025108 (2021). (doi:10.1063/5.0036328) 12.2.2


2020 Publications (49)

  1. Adeniyi, A.O., M. Kunz, E. Stavrou, and Y. Yao, “High-enthalpy crystalline phases of cadmium telluride,” Phys. Rev. Research 2(3), 033072 (2020).(doi:10.1103/PhysRevResearch.2.033072) 12.2.2


2. Baker, A.A., R. Thuss, N. Woollett, A. Maich, E. Stavrou, S.K. McCall, and H.B. Radousky, “Cold Spray Deposition of Thermoelectric Materials,” JOM 72(8), 2853-2859 (2020). (doi:10.1007/s11837-020-04151-2) 12.2.2


3. Bonmassar, N., M.F. Bekheet, L. Schlicker, A. Gili, A. Gurlo, A. Doran, Y. Gao, M. Heggen, J. Bernardi, B. Klötzer, and S. Penner, “In Situ-Determined Catalytically Active State of LaNiO3 in Methane Dry Reforming,” ACS Catalysis 10(2), 1102-1112 (2020). (doi:10.1021/acscatal.9b03687) 12.2.2


4. Chen, H., K.D. Leinenweber, V. Prakapenka, C. Prescher, Y. Meng, H. Bechtel, M. Kunz, and S.-H. Shim, “Possible H2O storage in the crystal structure of CaSiO3 perovskite,” Physics of the Earth and Planetary Interiors 299, 106412 (2020). (doi:10.1016/j.pepi.2019.106412) 1.4, 12.2.2


5. Chen, H., K. Leinenweber, V. Prakapenka, M. Kunz, H.A. Bechtel, Z. Liu, and S.-H. Shim, “Phase transformation of hydrous ringwoodite to the lower-mantle phases and the formation of dense hydrous silica,” Am. Mineral. 105(9), 1342-1348 (2020). (doi:10.2138/am-2020-7261) 12.2.2, 1.4


6. Cheng, B., H. Lou, A. Sarkar, Z. Zeng, F. Zhang, X. Chen, L. Tan, K. Glazyrin, H.-P. liermann, J. Yan, L. Wang, R. Djenadic, H. Hahn, and Q. Zeng, “Lattice distortion and stability of (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide under high pressure,” Mater. Today Adv. 8, 100102 (2020). (doi:10.1016/j.mtadv.2020.100102) 12.2.2


7. Gardner, D.W., J. Li, A. Morshedifard, S. Masoumi, M.J. Abdolhosseini Qomi, P.M. Monteiro, R. Maboudian, and C. Carraro, “Silicate Bond Characteristics in Calcium-silicate-hydrates Determined by High Pressure Raman Spectroscopy,” Journal of Physical Chemistry C 124(33), 18335-18345 (2020). (doi:10.1021/acs.jpcc.0c04563) 12.2.2


8. Giordano, N., C. Beavers, K. Kamenev, J. Love, J.R. Pankhurst, S. Teat, and S. Parsons, “Pressure-Induced Inclusion of Neon in the Crystal Structure of a Molecular Cu2(pacman) Complex at 4.67 GPa,” Chem. Commun. 56(23), 3449-3452 (2020). (doi:10.1039/C9CC09884D) 11.3.1, 12.2.2


9. Giordano, N., C.M. Beavers, B.J. Campbell, V. Eigner, E. Gregoryanz, W.G. Marshall, M. Peña-√Ålvarez, S.J. Teat, C.E. Vennari, and S. Parsons, “High-pressure polymorphism in pyridine,” IUCrJ 7(1), 58-70 (2020). (doi:10.1107/S2052252519015616) 12.2.2


10. Hackl, L., C.-H. Hsu, M.P. Gordon, K. Chou, C. Ma, M. Kolaczkowski, C.L. Anderson, Y.-S. Liu, J. Guo, P. Ercius, and J.J. Urban, “Sugar-alcohol@ZIF nanocomposites display suppressed phase-change temperatures,” J. Mater. Chem. A 8(45), 23795-23802 (2020). (doi:10.1039/D0TA05019A) 12.2.2


11. Jaffe, A., S.A. Mack, Y. Lin, W. Mao, J. Neaton, and H.I. Karunadasa, “High Compression-Induced Conductivity in a Layered Cu-Br Perovskite,” Angew. Chem. Int. Ed. 59(10), 4017-4022 (2020). (doi:10.1002/anie.201912575) 12.2.2


12. Jeong, S., T.W. Heo, J. Oktawiec, R. Shi, S. Kang, J.L. White, A. Schneemann, E. Zaia, L.F. Wan, K.G. Ray, Y.-S. Liu, V. Stavila, J. Guo, J.R. Long, B.C. Wood, and J.J. Urban, “A Mechanistic Analysis of Phase Evolution and Hydrogen Storage Behavior in Nanocrystalline Mg(BH4)2 within Reduced Graphene Oxide,” ACS Nano 14(2), 1745-1756 (2020). (doi:10.1021/acsnano.9b07454) 12.2.2


13. Kalkan, B., G. Okay, B.G. Aitken, S.M. Clark, and S. Sen, “Unravelling the mechanism of pressure induced polyamorphic transition in an inorganic molecular glass,” Scientific Reports 10(1), 5208 (2020). (doi:10.1038/s41598-020-61997-x) 12.2.2


14. Karl, D., T. Duminy, P. Lima, F. Kamutzki, A. Gili, A. Zocca, J. Günster, and A. Gurlo, “Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies,” Acta Astronaut. 174, 241-253 (2020). (doi:10.1016/j.actaastro.2020.04.064) 12.2.2


15. Karl, D., F. Kamutzki, P. Lima, A. Gili, T. Duminy, A. Zocca, J. Günster, and A. Gurlo, “Sintering of ceramics for clay in situ resource utilization on Mars,” Open Ceram. 3, 100008 (2020). (doi:10.1016/j.oceram.2020.100008) 12.2.2


16. Ke, F., L. Zhang, Y. Chen, K. Yin, C. Wang, Y.-K. Tzeng, Y. Lin, H. Dong, Z. Liu, J.S. Tse, W.L. Mao, J. Wu, and B. Chen, “Synthesis of Atomically Thin Hexagonal Diamond with Compression,” Nano Lett. 20(8), 5916-5921 (2020). (doi:10.1021/acs.nanolett.0c01872) 12.2.2


17. Kiani, M.T., C.M. Barr, S. Xu, D. Doan, Z. Wang, A. Parakh, K. Hattar, and X.W. Gu, “Ductile Metallic Glass Nanoparticles via Colloidal Synthesis,” Nano Lett. 20(9), 6481-6487 (2020). (doi:10.1021/acs.nanolett.0c02177) 12.2.2


18. Ko, B., V. Prakapenka, M. Kunz, C. Prescher, K. Leinenweber, and S.-H. Shim, “Mineralogy and density of Archean volcanic crust in the mantle transition zone,” Physics of the Earth and Planetary Interiors 305, 106490 (2020). (doi:10.1016/j.pepi.2020.106490) 12.2.2


19. Köpfle, N., K. Ploner, P. Lackner, T. Götsch, C. Thurner, E. Carbonio, M. Hävecker, A. Knop-Gericke, L. Schlicker, A. Doran, D. Kober, A. Gurlo, M. Willinger, S. Penner, M. Schmid, and B. Klötzer, “Carbide-Modified Pd on ZrO2 as Active Phase for CO2-Reforming of Methane-A Model Phase Boundary Approach,” Catalysts 10(9), 1000 (2020). (doi:10.3390/catal10091000) 12.2.2


20. Leversee, R.A., K. Rode, E. Greenberg, V.B. Prakapenka, J.S. Smith, M. Kunz, C.J. Pickard, and E. Stavrou, “High pressure chemical reactivity and structural study of the Na-P and Li-P systems,” J. Mater. Chem. A 8(41), 21797-21803 (2020). (doi:10.1039/D0TA08563D) 12.2.2


21. Li, J., W. Zhang, K. Garbev, G. Beuchle, and P.M. Monteiro, “Influences of cross-linking and Al incorporation on the intrinsic mechanical properties of tobermorite,” Cement Contrete Res. 136, 106170 (2020). (doi:10.1016/j.cemconres.2020.106170) 12.2.2


22. Li, J., W. Zhang, and P.M. Monteiro, “Mechanical properties of struvite-K: A high-pressure X-ray diffraction study,” Cement Contrete Res. 136, 106171 (2020). (doi:10.1016/j.cemconres.2020.106171) 12.2.2


23. Li, J., W. Zhang, and P.M. Monteiro, “The structure and intrinsic mechanical properties of nanocrystalline calcium silicate hydrate,” ACS Sustainable Chem Eng 8(33), 12453-12461 (2020). (doi:10.1021/acssuschemeng.0c03230) 12.2.2, 5.3.2.2, 5.3.2.1


24. Li, J., W. Zhang, K. Xu, and P.M. Monteiro, “Fibrillar calcium silicate hydrate seeds from hydrated tricalcium silicate lower cement demand,” Cement Contrete Res. 137, 106195 (2020). (doi:10.1016/j.cemconres.2020.106195) 12.2.2


25. Liu, J., J. Chen, W. Li, H. Tian, X. Zhang, N. Li, J. Yan, M. Kunz, B. Chen, and H. Zhang, “Differentiating the Electrical and Optoelectrical Properties of Oxysulfides La2Ta2MS2O8 (M = Zr, Ti) via Application of Pressure,” Journal of Physical Chemistry C 124(27), 14477-14484 (2020). (doi:10.1021/acs.jpcc.0c03231) 12.2.2


26. Liu, Y., H. Lou, F. Zhang, T. Liang, S. Chen, S. Li, X. Zhang, L. Tan, V.B. Prakapenka, E. Greenberg, Y. Yang, Z. Zeng, and Q. Zeng, “Pressure-induced crystallization of an amorphous martensite alloy,” J. Appl. Phys. 128(8), 085901 (2020). (doi:10.1063/5.0015076) 12.2.2


27. Lou, H., Z. Zeng, F. Zhang, S. Chen, P. Luo, X. Chen , Y. Ren, V. Prakapenka, C. Prescher, X. Zuo, T. Li, J. Wen, W.-H. Wang, H. Sheng, and Q. Zeng, “Two-way tuning of structural order in metallic glasses,” Nature Communications 11(1), 314 (2020). (doi:10.1038/s41467-019-14129-7) 12.2.2


28. Mattox, T.M., G. Bolek, A.L. Pham, M. Kunz, Y.-S. Liu, S.C. Fakra, M.P. Gordon, A. Doran, J. Guo, and J.J. Urban, “Calcium chloride substitution in sodium borohydride,” J. Solid State Chem. 290, 121499 (2020). (doi:10.1016/j.jssc.2020.121499) 12.2.2, 7.3.1, 8.0.1.3, 10.3.2


29. Moon, J., S. Kim, C.M. Akgul, S.-C. Bae, and S.M. Clark, “Experimental and theoretical study on elastic properties of crystalline alkali silicate hydrate,” Mater. Des. 185, 108240 (2020). (doi:10.1016/j.matdes.2019.108240) 12.2.2


30. Moon, J., S. Kim, S. Bae, and S.M. Clark, “Pressure-induced anomalous behavior of thaumasite crystal,” Journal of the American Ceramic Society 103(6), 3763-3775 (2020). (doi:10.1111/jace.17035) 12.2.2


31. Oktawiec, J., H.H. Jiang, J.G. Vitillo, D.A. Reed, L.E. Darago, B.A. Trump, V. Bernales, H. Li, K.A. Colwell, H. Furukawa, C.M. Brown, L. Gagliardi, and J.R. Long, “Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal-organic framework,” Nature Communications 11(1), 3087 (2020). (doi:10.1038/s41467-020-16897-z) 12.2.2


32. Ott, J.N., and Q. Williams, “Raman spectroscopic constraints on compression and metastability of the amphibole tremolite at high pressures and temperatures,” Physics and Chemistry of Minerals 47(6), 27 (2020). (doi:10.1007/s00269-020-01095-6) 12.2.2


33. Parakh, A., S. Lee, K.A. Harkins, M.T. Kiani, D. Doan, M. Kunz, A. Doran, L.A. Hanson, S. Ryu, and X.W. Gu, “Nucleation of Dislocations in 3.9 nm Nanocrystals at High Pressure,” Phys. Rev. Lett. 124(10), 106104 (2020). (doi:10.1103/PhysRevLett.124.106104) 12.2.2


34. Parakh, A., S. Lee, M.T. Kiani, D. Doan, M. Kunz, A. Doran, S. Ryu, and X.W. Gu, “Stress-Induced Structural Transformations in Au Nanocrystals,” Nano Lett. 20(10), 7767-7773 (2020). (doi:10.1021/acs.nanolett.0c03371) 12.2.2


35. Park, S., I.I. Abate, J. Liu, C. Wang, J.P. Dahl, R.K. Carlson, L. Yang, V.B. Prakapenka, E. Greenberg, T.P. Devereaux, C. Jia, R.C. Ewing, W.L. Mao, and Y. Lin, “Facile diamond synthesis from lower diamondoids,” Science Advances 6(8), eaay9405 (2020). (doi:10.1126/sciadv.aay9405) 12.2.2


36. Perez, T., G.J. Finkelstein, O. Pardo, N.V. Solomatova, and J.M. Jackson, “A Synchrotron Mössbauer Spectroscopy Study of a Hydrated Iron-Sulfate at High Pressures,” Minerals 10(2), 146 (2020). (doi:10.3390/min10020146) 12.2.2


37. Pham, T.A., R.M. Coulthard, M. Zobel, A. Maiti, S.F. Buchsbaum, C. Loeb, P.G. Campbell, D.L. Plata, B.C. Wood, F. Fornasiero, and E.R. Meshot, “Structural Anomalies and Electronic Properties of an Ionic Liquid under Nanoscale Confinement,” The Journal of Physical Chemistry Letters 11(15), 6150-6155 (2020). (doi:10.1021/acs.jpclett.0c01810) 7.3.3, 12.2.2


38. Ploner, K., M. Watschinger, P.D. Kheyrollahi Nezhad, T. Götsch, L. Schlicker, E.-M. Köck, A. Gurlo, A. Gili, A. Doran, L. Zhang, N. Köwitsch, M. Armbrüster, S. Vanicek, W. Wallisch, C. Thurner, B. Klötzer, and S. Penner, “Mechanistic insights into the catalytic methanol steam reforming performance of Cu/ZrO2 catalysts by in situ and operando studies,” J. Catal. 391, 497-512 (2020). (doi:10.1016/j.jcat.2020.09.018) 12.2.2


39. Ray, A.E., C.L. Williams, A.N. Hoover, C. Li, K.L. Sale, R.M. Emerson, J. Klinger, E. Oksen, A. Narani, J. Yan, C.M. Beavers, D. Tanjore, M. Yunes, E. Bose, J.H. Leal, J.L. Bowen, E.J. Wolfrum, M.G. Resch, T.A. Semelsberger, and B.S. Donohoe, “Multiscale Characterization of Lignocellulosic Biomass Variability and Its Implications to Preprocessing and Conversion: a Case Study for Corn Stover,” ACS Sustainable Chem Eng 8(8), 3218-3230 (2020). (doi:10.1021/acssuschemeng.9b06763) 12.2.2


40. Wu, S., B.A. Frandsen, M. Wang, M. Yi, and R.J. Birgeneau, “Iron-Based Chalcogenide Spin Ladder BaFe2X3 (X = Se,S),” J. Supercond. Novel Magn. 33(1), 143-158 (2020). (doi:10.1007/s10948-019-05304-4) 12.2.2


41. Xu, J., T. Huang, H. Dong, D. Tan, Z. Feng, T. Wei, R.A. Susilo, Y. Wang, H. Wang, M. Yuan, L. Zhang, S. Wan, Y. Huang, T. Lu, Y. Chen, Z. Chen, and B. Chen, “Structural and mechanical properties of magnesium aluminate nanoceramics under high pressure,” Appl. Phys. Lett. 117(4), 041901 (2020). (doi:10.1063/5.0010180) 12.2.2


42. Xuan, Y., L. Tan, B. Cheng, F. Zhang, X. Chen, M. Ge, Q. Zeng, and Z. Zeng, “Pressure-Induced Phase Transitions in Nanostructured Silicon,” Journal of Physical Chemistry C 124(49), 27089-27096 (2020). (doi:10.1021/acs.jpcc.0c07686) 12.2.2


43. Yen, C.E., Q. Williams, and M. Kunz, “Thermal Pressure in the Laser-Heated Diamond Anvil Cell: A Quantitative Study and Implications for the Density Versus Mineralogy Correlation of the Mantle,” J Geophys Res Solid Earth 125(10), e2020JB020006 (2020). (doi:10.1029/2020JB020006) 12.2.2


44. Yeung, M., D.C. Popple, E.A. Schriber, S.J. Teat, C.M. Beavers, A. Demessence, T.R. Kuykendall, and J.N. Hohman, “Corrosion of Late- and Post-Transition Metals into Metal-Organic Chalcogenolates and Implications for Nanodevice Architectures,” ACS Appl. Nano Mater. 3(4), 3568-3577 (2020). (doi:10.1021/acsanm.0c00057) 12.2.2


45. Zeng, Z., Q. Zeng, M. Ge, B. Chen, H. Lou, X. Chen, J. Yan, W. Yang, H.-k. Mao, D. Yang, and W.L. Mao, “Origin of Plasticity in Nanostructured Silicon,” Phys. Rev. Lett. 124(18), 185701 (2020). (doi:10.1103/PhysRevLett.124.185701) 12.2.2


46. Zhang, X., H. Tian, W. Li, W. Liu, J. Chen, J. Liu, X. Han, B. Yan, Z. Chen, H. Gou, K. Li, H. Jiang, D. Zhang, M. Kunz, and H. Zhang, “High-Pressure Phase Transitions in Densely Packed Nanocrystallites of TiO2-II,” Journal of Physical Chemistry C 124(1), 1197-1206 (2020). (doi:10.1021/acs.jpcc.9b09932) 12.2.2


47. Zhang, C., U. Bhandari, C. Zeng, H. Ding, S. Guo, J. Yan, and S. Yang, “Carbide Formation in Refractory Mo15Nb20Re15Ta30W20 Alloy under a Combined High-Pressure and High-Temperature Condition,” Entropy 22(7), 718 (2020). (doi:10.3390/e22070718) 12.2.2


48. Zhou, X., Z. Feng, L. Zhu, J. Xu, L. Miyagi, H. Dong, H. Sheng, Y. Wang, Q. Li, Y. Ma, H. Zhang, J. Yan, N. Tamura, M. Kunz, K. Lutker, T. Huang, D.A. Hughes, X. Huang, and B. Chen, “High-pressure strengthening in ultrafine-grained metals,” Nature 579(7797), 67-72 (2020). (doi:10.1038/s41586-020-2036-z) 12.2.2


49. Ziebel, M.E., C.A. Gaggioli, A. Turkiewicz, W. Ryu, L. Gagliardi, and J.R. Long, “Effects of Covalency on Anionic Redox Chemistry in Semiquinoid-Based Metal-Organic Frameworks,” J. Am. Chem. Soc. 142(5), 2653-2664 (2020). (doi:10.1021/jacs.9b13050) 12.2.1, 12.2.2


2019 Publications (47)

1. Adeleke, A.A., M. Kunz, E. Greenberg, V. Prakapenka, Y. Yao, and E. Stavrou, “High-pressure compound of argon and nickel: noble gas in the Earth's core?,” ACS Earth Space Chem 3(11), 2517-2524 (2019). (doi:10.1021/acsearthspacechem.9b00212) 12.2.2


2. Bekheet, M.F., M. Grünbacher, L. Schlicker, A. Gili, A. Doran, J.D. Epping, A. Gurlo, B. Klötzer, and S. Penner, “On the structural stability of crystalline ceria phases in undoped and acceptor-doped ceria materials under in situ reduction conditions,” CrystEngComm 21(1), 145-154 (2019). (doi:10.1039/C8CE01726C) 12.2.2


3. Bennion, J.C., I.G. Batyrev, and J. Ciezak-Jenkins, “The High-Pressure Characterization of Melt-Castable Energetic Materials: 3,3'-Bis-Oxadiazole-5,5'-Bis-Methylene Dinitrate,” Propellants, Explosives, Pyrotechnics 44(2), 160-165 (2019). (doi:10.1002/prep.201800215) 12.2.2


4. Bennion, J.C., P.G. Lafond, and J. Ciezak-Jenkins, “High-Pressure Characterization of Melt-Castable Biisoxazole Energetics: 3,3'-Biisoxazole-5,5'-bis-(Methylene) Dinitrate and 3,3'-Biisoxazole-4,4',5,5'-Tetrakis-(Methylene Nitrate),” Propellants, Explosives, Pyrotechnics 44(8), 1015-1020 (2019). (doi:10.1002/prep.201800313) 12.2.2


5. Bennion, J.C., J. Ciezak-Jenkins, and T.A. Jenkins, “High-Pressure Characterization of High-Performance Insensitive Energetic Materials: Dihydroxylammonium 5,5'-Bis(3-Nitro-1,2,4-Triazolate-1N-Oxide) (MAD-X1),” Propellants, Explosives, Pyrotechnics 44(10), 1263-1269 (2019). (doi:10.1002/prep.201900097) 12.2.2


6. Chen, B., Y. Huang, J. Xu, X. Zhou, Z. Chen, H. Zhang, J. Zhang, J. Qi, T. Lu, J. Banfield, J. Yan, S.V. Raju, A.E. Gleason, S. Clark, and A.A. MacDowell, “Revealing the ductility of nanoceramic MgAl2O4,” J. Mater. Res. 34(9), 1489-1498 (2019). (doi:10.1557/jmr.2019.114) 12.2.2


7. Chen, J., W. Liu, J. Liu, X. Zhang, M. Yuan, Y. Zhao, J. Yan, M. Hou, J. Yan, M. Kunz, N. Tamura, H. Zhang, and Z. Yin, “Stability and Compressibility of Cation-Doped High-Entropy Oxide MgCoNiCuZnO5,” Journal of Physical Chemistry C 123(29), 17735-17744 (2019). (doi:10.1021/acs.jpcc.9b04992) 12.2.2, 12.3.2


8. Cheng, B., F. Zhang, H. Lou, X. Chen , P.K. Liaw, J. Yan, Z. Zeng, Y. Ding, and Q. Zeng, “Pressure-induced phase transition in the AlCoCrFeNi high-entropy alloy,” Scripta Materialia 161, 88-92 (2019). (doi:10.1016/j.scriptamat.2018.10.020) 12.2.2


9. Cheng, B., H. Lou, A. Sarkar, Z. Zeng, F. Zhang, X. Chen , L. Tan, V. Prakapenka, E. Greenberg, J. Wen, R. Djenadic, H. Hahn, and Q. Zeng, “Pressure-induced tuning of lattice distortion in a high-entropy oxide,” Commun. Chem. 2(1), 114 (2019). (doi:10.1038/s42004-019-0216-2) 12.2.2


10. Dobrosavljevic, V.V., W. Sturhahn, and J.M. Jackson, “Evaluating the Role of Iron-Rich (Mg,Fe)O in Ultralow Velocity Zones,” Minerals 9(12), 762 (2019). (doi:10.3390/min9120762) 12.2.2


11. Du, Q., X.-J. Liu, Q. Zeng, H. Fan, H. Wang, Y. Wu, S.-W. Chen, and Z.-P. Lu, “Polyamorphic transition in a transition metal based metallic glass under high pressure,” Physical Review B 99(1), 014208 (2019). (doi:10.1103/PhysRevB.99.014208) 12.2.2


12. Gao, Z., W. Peng, B. Chen, S. Redfern, K. Wang, B. Chu, Q. He, Y. Sun, X. Chen , H. Nie, W. Deng, L. Zhang, H. He, G. Wang, and X. Dong, “Giant power output in lead-free ferroelectrics by shock-induced phase transition,” Phys. Rev. Materials 3(3), 035401 (2019). (doi:10.1103/PhysRevMaterials.3.035401) 12.2.2


13. Gili, A., L. Schlicker, M.F. Bekheet, O. Görke, D. Kober, U. Simon, P. Littlewood, R. Schomäcker, A. Doran, D. Gaissmaier, T. Jacob, S. Selve, and A. Gurlo, “Revealing the Mechanism of Multi-Walled Carbon Nanotube Growth on Supported Nickel Nanoparticles by In Situ Synchrotron X-Ray Diffraction, Density Functional Theory and Molecular Dynamics Simulations,” ACS Catalysis 9(8), 6999-7011 (2019). (doi:10.1021/acscatal.9b00733) 12.2.2


14. Giordano, N., C.M. Beavers, K.V. Kamenev, W.G. Marshall, S. Moggach, S.D. Patterson, S.J. Teat, J.E. Warren, P.A. Wood, and S. Parsons, “High-pressure polymorphism in l-threonine between ambient pressure and 22 GPa,” CrystEngComm 21(30), 4444-4456 (2019). (doi:10.1039/C9CE00388F) 12.2.2


15. Götsch, T., N. Köpfle, M. Grünbacher, J. Bernardi, E.A. Carbonio, M. Hävecker, A. Knop-Gericke, M.F. Bekheet, L. Schlicker, A. Doran, A. Gurlo, A. Franz, B. Klötzer, and S. Penner, “Crystallographic and electronic evolution of lanthanum strontium ferrite (La0.6Sr0.4FeO3-δ) thin film and bulk model systems during iron exsolution,” Phys. Chem. Chem. Phys. 21(7), 3781-3794 (2019). (doi:10.1039/C8CP07743F) 12.2.2


16. Götsch, T., N. Köpfle, L. Schlicker, E.A. Carbonio, M. Hävecker, A. Knop-Gericke, R. Schloegl, M.F. Bekheet, A. Gurlo, A. Doran, J. Bernardi, B. Klötzer, and S. Penner, “Treading in the Limited Stability Regime of Lanthanum Strontium Ferrite - Reduction, Phase Change and Exsolution,” ECS Transactions 91(1), 1771-1781 (2019). (doi:10.1149/09101.1771ecst) 12.2.2


17. Hardy, D.A., E.T. Nguyen, S.E. Parrish, E.A. Schriber, L. Schlicker, A. Gili, F. Kamutzki, J.N. Hohman, and G.F. Strouse, “Prussian Blue Iron-Cobalt Mesocrystals as a Template for the Growth of Fe/Co Carbide (Cementite) and Fe/Co Nanocrystals,” Chem. Mater. 31(19), 8163-8173 (2019). (doi:10.1021/acs.chemmater.9b02957) 12.2.2


18. Hinton, J.P., S.M. Clarke, B.A. Steele, I.-F. Kuo, E. Greenberg, V. Prakapenka, M. Kunz, M.P. Kroonblawd, and E. Stavrou, “Effects of pressure on the structure and lattice dynamics of α-glycine: a combined experimental and theoretical study,” CrystEngComm 21(30), 4457-4464 (2019). (doi:10.1039/C8CE02123F) 12.2.2


19. Jeong, S., P.J. Milner, L.F. Wan, Y. Liu, J. Oktawiec, E. Zaia, A.C. Forse, N. Leick, T. Gennett, J. Guo, D. Prendergast, J.R. Long, and J.J. Urban, “Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride,” Adv. Mater. 31(44), 1904252 (2019). (doi:10.1002/adma.201904252) 8.0.1.4, 8.0.1.1, 12.2.2


20. Kalkan, B., and E. Ozdas, “Staging Phenomena in Lithium-Intercalated Boron-Carbon,” ACS Applied Materials 11(4), 4111-4122 (2019). (doi:10.1021/acsami.8b19142) 12.2.2


21. Lei, J., M. Yeung, R. Mohammadi, C.L. Turner, J. Yan, R.B. Kaner, and S. Tolbert, “Understanding the mechanism of hardness enhancement in tantalum-substituted tungsten monoboride solid solutions,” J. Appl. Phys. 125(8), 082529 (2019). (doi:10.1063/1.5054616) 12.2.2


22. Lei, J., G. Akopov, M. Yeung, J. Yan, R.B. Kaner, and S. Tolbert, “Radial X-Ray Diffraction Study of Superhard Early Transition Metal Dodecaborides under High Pressure,” Advanced Functional Materials 29(22), 1900293 (2019). (doi:10.1002/adfm.201900293) 12.2.2


23. Lei, J., S. Hu, C.L. Turner, K. Zeng, M. Yeung, J. Yan, R.B. Kaner, and S. Tolbert, “Synthesis and High-Pressure Mechanical Properties of Superhard Rhenium/Tungsten Diboride Nanocrystals,” ACS Nano 13(9), 10036-10048 (2019). (doi:10.1021/acsnano.9b02103) 12.2.2


24. Li, Y.-L., E. Stavrou, Q. Zhu, S.M. Clarke, Y. Li, and H.-M. Huang, “Superconductivity in the van der Waals layered compound PS2,” Physical Review B 99(22), 220503 (2019). (doi:10.1103/PhysRevB.99.220503) 12.2.2


25. Lin, F., S.C. Couper, M.A. Jugle, and L. Miyagi, “Competing Deformation Mechanisms in Periclase: Implications for Lower Mantle Anisotropy,” Minerals 9(11), 650 (2019). (doi:10.3390/min9110650) 12.2.2


26. Lin, F., M.G. Giannetta, M.A. Jugle, S.C. Couper, B. Dunleavy, and L. Miyagi, “Texture Development and Stress-Strain Partitioning in Periclase + Halite Aggregates,” Minerals 9(11), 679 (2019). (doi:10.3390/min9110679) 12.2.2


27. Liu, J., J. Yan, Q. Shi, H. Dong, J. Zhang, Z. Wang, W. Huang, B. Chen, and H. Zhang, “Pressure Dependence of Electrical Conductivity of Black Titania Hydrogenated at Different Temperatures,” Journal of Physical Chemistry C 123(7), 4094-4102 (2019). (doi:10.1021/acs.jpcc.8b12056) 12.2.2


28. Liu, W., J. Chen, X. Zhang, J. Yan, M. Hou, M. Kunz, D. Zhang, and H. Zhang, “Pressure-Induced Phase Transitions of Natural Brookite,” ACS Earth Space Chem 3(5), 844-853 (2019). (doi:10.1021/acsearthspacechem.8b00213) 12.2.2


29. Lu, Y., S. Zhu, E. Huang, Y. He, J. Ruan, G. Liu, and H. Yan, “Pressure-driven band gap engineering in ion-conducting semiconductor silver orthophosphate,” J. Mater. Chem. A 7(9), 4451-4458 (2019). (doi:10.1039/C8TA10606A) 12.2.2


30. Ma, C., and J.J. Urban, “Hydrogen-Bonded Polyimide/Metal-Organic Framework Hybrid Membranes for Ultrafast Separations of Multiple Gas Pairs,” Advanced Functional Materials 29(32), 1903243 (2019). (doi:10.1002/adfm.201903243) 12.2.2


31. Mattox, T.M., A. Doran, and J.J. Urban, “Chloride influence on the reaction mechanism of lanthanum hexaboride,” J. Cryst. Growth 518, 30-33 (2019). (doi:10.1016/j.jcrysgro.2019.04.020) 12.2.2


32. Parry, M., S. Couper, A. Mansouri Tehrani, A.O. Oliynyk, J. Brgoch, L. Miyagi, and T.D. Sparks, “Lattice strain and texture analysis of superhard Mo0.9W1.1BC and ReWC0.8via diamond anvil cell deformation,” J. Mater. Chem. A 7(41), 24012-24018 (2019). (doi:10.1039/C9TA06431A) 12.2.2


33. Ploner, K., L. Schlicker, A. Gili, A. Gurlo, A. Doran, L. Zhang, M. Armbrüster, D. Obendorf, J. Bernardi, B. Klötzer, and S. Penner, “Reactive metal-support interaction in the Cu-In2O3 system: intermetallic compound formation and its consequences for CO2-selective methanol steam reforming,” Sci. Technol. Adv. Mater. 20(1), 356-366 (2019). (doi:10.1080/14686996.2019.1590127) 12.2.2


34. Saqib, H., S. Rahman, D. Errandonea, R.A. Susilo, A. Jorge-Montero, P. Rodríguez-Hernández, A. Muñoz, Y. Sun, Z. Chen, N. Dai, and B. Chen, “Giant conductivity enhancement: Pressure-induced semiconductor-metal phase transition in Cd0.90Zn0.1Te,” Physical Review B 99(9), 094109 (2019). (doi:10.1103/PhysRevB.99.094109) 12.2.2


35. Schlicker, L., R. Popescu, M.F. Bekheet, A. Doran, D. Gerthsen, and A. Gurlo, “Real-time direct transmission electron microscopy imaging of phase and morphology transformation from solid indium oxide hydroxide to hollow corundum-type indium oxide nanocrystallites,” Nanoscale 11(25), 12242-12249 (2019). (doi:10.1039/C9NR02115A) 12.2.2


36. Schyck, S.N., E. Evlyukhin, E. Kim, and M. Pravica, “High pressure behavior of mercury difluoride (HgF2),” Chem. Phys. Lett. 724, 35-41 (2019). (doi:10.1016/j.cplett.2019.03.045) 12.2.2


37. Shakibi‚ÄÖNia, N., D. Hauser, L. Schlicker, A. Gili, A. Doran, A. Gurlo, S. Penner, and J. Kunze‚ÄêLiebhäuser, “Zirconium Oxycarbide: A Highly Stable Catalyst Material for Electrochemical Energy Conversion,” ChemPhysChem 20(22), 3067-3073 (2019). (doi:10.1002/cphc.201900539) 12.2.2


38. Solomatova, N.V., A. Alieva, G.J. Finkelstein, W. Sturhahn, M.B. Baker, C.M. Beavers, J. Zhao, T.S. Toellner, and J.M. Jackson, “High-pressure single-crystal X-ray diffraction and synchrotron Mössbauer study of monoclinic ferrosilite,” Comptes Rendus Geoscience 351(2-3), 129-140 (2019). (doi:10.1016/j.crte.2018.06.012) 12.2.2


39. Susilo, R.A., G. Li, J. Feng, W. Deng, M. Yuan, S. Li, H. Dong, and B.-R. Chen, “Pressure-induced structural and electronic transitions of thiospinel Fe3S4,” Journal of Physics: Condensed Matter 31(9), 095401 (2019). (doi:10.1088/1361-648X/aafadb) 12.2.2


40. Tan, L., Z. Zeng, H. Lou, F. Zhang, X. Chen , S. Chen, Y. Xuan, F. Peng, and Q. Zeng, “Stability of Zirconium Carbide under High Pressure and High Temperature,” Journal of Physical Chemistry C 123(15), 10051-10056 (2019). (doi:10.1021/acs.jpcc.9b00715) 12.2.2


41. Wang, X., P. Zhang, X. Tang, J. Guan, X. Lin, Y. Wang, X. Dong, B. Yue, J. Yan, K. Li, H. Zheng, and H.-k. Mao, “Structure and Electrical Performance of Na2C6O6 under High Pressure,” Journal of Physical Chemistry C 123(28), 17163-17169 (2019). (doi:10.1021/acs.jpcc.9b04610) 12.2.2


42. Wu, S., J. Yin, T.J. Smart, A. Acharya, C.L. Bull, N.P. Funnell, T.R. Forrest, G. Simutis, R. Khasanov, S. Lewin, M. Wang, B.A. Frandsen, R. Jeanloz, and R.J. Birgeneau, “Robust block magnetism in the spin ladder compound BaFe2Se3 under hydrostatic pressure,” Physical Review B 100(21), 214511 (2019). (doi:10.1103/PhysRevB.100.214511) 12.2.2


43. Xiao, D.J., E.D. Chant, A.D. Frankhouser, Y. Chen, A. Yau, N.M. Washton, and M.W. Kanan, “A closed cycle for esterifying aromatic hydrocarbons with CO2 and alcohol,” Nat. Chem. 11(10), 940-947 (2019). (doi:10.1038/s41557-019-0313-y) 12.2.2


44. Zhang, B., Q. Zeng, R. Kou, L. Yang, H. Lou, S.M. Heald, J. Chen, Y. Ding, C.-J. Sun, and G.M. Chow, “Investigation of non-local screening in K-edge XANES for Pr0.67Sr0.33MnO3 under high pressure,” J. Alloys Cmpd. 792, 108-115 (2019). (doi:10.1016/j.jallcom.2019.03.415) 12.2.2


45. Zhao, X.-M., H.-y. Liu, A.F. Goncharov, Z.-W. Zhao, V.V. Struzhkin, H.-K. Mao, A.G. Gavriliuk, and X.-J. Chen, “Pressure effect on the electronic, structural, and vibrational properties of layered 2H-MoTe2,” Physical Review B 99(2), 024111 (2019). (doi:10.1103/PhysRevB.99.024111) 12.2.2


46. Zhou, Y., C.A. Orozco, E. Duque-Redondo, H. Manzano, G. Geng, P. Feng, P.M. Monteiro, and C. Miao, “Modification of poly(ethylene glycol) on the microstructure and mechanical properties of calcium silicate hydrates,” Cement Contrete Res. 115, 20-30 (2019). (doi:10.1016/j.cemconres.2018.10.001) 12.2.2


47. Zhou, Y., L. Tang, J. Liu, and C. Miao, “Interaction mechanisms between organic and inorganic phases in calcium silicate hydrates/poly(vinyl alcohol) composites,” Cement Contrete Res. 125, 105891 (2019). (doi:10.1016/j.cemconres.2019.105891) 12.2.2


2018 Publications (35)

1. Batyrev, I.G., S.P. Coleman, J. Ciezak-Jenkins, E. Stavrou, and J.M. Zaug, “Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure,” MRS Adv. 3(8), 499-504 (2018). (doi:10.1557/adv.2018.277) 12.2.2

2. Bekheet, M.F., L. Schlicker, A. Doran, K. Siemensmeyer, and A. Gurlo, “Ferrimagnetism in manganese-rich gallium and aluminium spinels due to mixed valence Mn2+‚ÄìMn3+ states,” Dalton Trans. 47(8), 2727-2738 (2018). (doi:10.1039/C7DT04765G) 12.2.2

3. Chidester, B., O.Sabine. Pardo, R.A. Fischer, E.Colette. Thompson, D.L. Heinz, C. Prescher, V. Prakapenka, and A.J. Campbell, “High-pressure phase behavior and equations of state of ThO2 polymorphs,” Am. Mineral. 103(5), 749-756 (2018). (doi:10.2138/am-2018-6212) 12.2.2

4. Dai, Y., and Y. Qi, “High-Pressure-Induced Phase Transition in 2,5-Diketopiperazine: The Anisotropic Compression of N‚ÄìH¬∑¬∑¬∑O Hydrogen-Bonded Tapes,” Journal of Physical Chemistry C 122(22), 11747-11753 (2018). (doi:10.1021/acs.jpcc.8b03931) 12.2.2

5. Dang, N.Chuong., and J. Ciezak-Jenkins, “Kinetic effects on the morphology and stability of the pressure-induced extended-solid of carbon monoxide,” The Journal of Chemical Physics 148(14), 144702 (2018). (doi:10.1063/1.5004556) 12.2.2

6. Geng, G., J. Li, Y. Zhou, L. Liu, J. Yan, M. Kunz, and P.M. Monteiro, “A high-pressure X-ray diffraction study of the crystalline phases in calcium aluminate cement paste,” Cement Contrete Res. 108, 38-45 (2018). (doi:10.1016/j.cemconres.2018.03.004) 12.2.2

7. Geng, G., R. Vasin, J. Li, M.J. Qomi, J. Yan, H. Wenk, and P.M. Monteiro, “Preferred orientation of calcium aluminosilicate hydrate induced by confined compression,” Cement Contrete Res. 113, 186-196 (2018). (doi:10.1016/j.cemconres.2018.09.002) 12.2.2

8. Gili, A., L. Schlicker, M.F. Bekheet, O. Görke, S. Penner, M. Grünbacher, T. Götsch, P. Littlewood, T.J. Marks, P.C. Stair, R. Schomäcker, A. Doran, S. Selve, U. Simon, and A. Gurlo, “Surface Carbon as a Reactive Intermediate in Dry Reforming of Methane to Syngas on a 5% Ni/MnO Catalyst,” ACS Catalysis 8(9), 8739-8750 (2018). (doi:10.1021/acscatal.8b01820) 12.2.2

9. Götsch, T., L. Schlicker, M.F. Bekheet, A. Doran, M. Grünbacher, C. Praty, M. Tada, H. Matsui, N. Ishiguro, A. Gurlo, B. Klötzer, and S. Penner, “Structural investigations of La0.6Sr0.4FeO3-δ under reducing conditions: kinetic and thermodynamic limitations for phase transformations and iron exsolution phenomena,” RSC Adv. 8(6), 3120-3131 (2018). (doi:10.1039/C7RA12309D) 12.2.2

10. Götsch, T., K. Ploner, J. Bernardi, L. Schlicker, A. Gili, A. Doran, A. Gurlo, and S. Penner, “Formation of Pd-Ce intermetallic compounds by reductive metal-support interaction,” J. Solid State Chem. 265, 176-183 (2018). (doi:10.1016/j.jssc.2018.05.036) 12.2.2

11. Gu, K., R.Agung. Susilo, F. Ke, W. Deng, Y. Wang, L. Zhang, H. Xiao, and B. Chen, “Pressure-induced Enhancement in the Superconductivity of ZrTe3,” Journal of Physics: Condensed Matter 30(38), 385701 (2018). (doi:10.1088/1361-648X/aada53) 12.2.2

12. Guo, C., Y. Yang, L. Tan, J. Lei, S. Guo, B. Chen, J. Yan, and S. Yang, “Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal,” AIP Advances 8(2), 025216 (2018). (doi:10.1063/1.5022267) 12.2.2

13. Kalkan, B., B.K. Godwal, S.V. Raju, and R. Jeanloz, “Local structure of molten AuGa2 under pressure: Evidence for coordination change and planetary implications,” Scientific Reports 8(1), 6844 (2018). (doi:10.1038/s41598-018-25297-9) 12.2.2

14. Köpfle, N., T. Götsch, M. Grünbacher, E.A. Carbonio, M. Hävecker, A. Knop-Gericke, L. Schlicker, A. Doran, D. Kober, A. Gurlo, S. Penner, and B. Klötzer, “Zirconium-assisted Activation of Palladium boosts Syngas Production by Methane Dry Reforming,” Angewandte Chemie International Edition 57(44), 14613-14618 (2018). (doi:10.1002/anie.201807463) 12.2.2

15. Kroonblawd, M.P., B. Koroglu, J.M. Zaug, P.F. Pagoria, N. Goldman, E. Greenberg, V. Prakapenka, M. Kunz, S. Bastea, and E. Stavrou, “Effects of pressure on the structure and lattice dynamics of ammonium perchlorate: A combined experimental and theoretical study,” The Journal of Chemical Physics 149(3), 034501 (2018). (doi:10.1063/1.5030713) 12.2.2

16. Kunz, M., J. Yan, E.W. Cornell, E. Domning, C.E. Yen, A. Doran, C.M. Beavers, A.J. Treger, Q. Williams, and A.A. MacDowell, “Implementation and application of the peak scaling method for temperature measurement in the laser heated diamond anvil cell,” Rev. Sci. Instrum. 89(8), 083903 (2018). (doi:10.1063/1.5028276) 12.2.2

17. Lei, J., M. Yeung, P.J. Robinson, R. Mohammadi, C.L. Turner, J. Yan, A. Kavner, A.N. Alexandrova, R.B. Kaner, and S. Tolbert, “Understanding How Bonding Controls Strength Anisotropy in Hard Materials by Comparing the High-Pressure Behavior of Orthorhombic and Tetragonal Tungsten Monoboride,” Journal of Physical Chemistry C 122(10), 5647-5656 (2018). (doi:10.1021/acs.jpcc.7b11478) 12.2.2

18. Ma, C., O. Tschauner, J.R. Beckett, G.R. Rossman, C. Prescher, V. Prakapenka, H.A. Bechtel, and A. MacDowell, “Liebermannite, KAlSi3O8, a new shock-metamorphic, high-pressure mineral from the Zagami Martian meteorite,” Meteoritics & Planetary Science 53(1), 50-61 (2018). (doi:10.1111/maps.13000) 5.4, 12.2.2

19. Mansouri Tehrani, A., A.O. Oliynyk, M. Parry, Z. Rizvi, S.Christine. Couper, F. Lin, L. Miyagi, T.D. Sparks, and J. Brgoch, “Machine Learning Directed Search for Ultraincompressible, Superhard Materials,” Journal of the American Chemical Society 140(31), 9844-9853 (2018). (doi:10.1021/jacs.8b02717) 12.2.2

20. Mattox, T.Marie., C. Groome, A. Doran, C.M. Beavers, and J.J. Urban, “Chloride Influence on the Formation of Lanthanum Hexaboride: an In-Situ Diffraction Study,” J. Cryst. Growth 486, 60-65 (2018). (doi:10.1016/j.jcrysgro.2018.01.013) 12.2.2

21. McGuire, C., K.S. Sawchuk, and A. Kavner, “Measurements of thermal conductivity across the B1-B2 phase transition in NaCl,” J. Appl. Phys. 124(11), 115902 (2018). (doi:10.1063/1.5042407) 12.2.2

22. Mi, Z., S.R. Shieh, A. Kavner, B. Kiefer, H. Wenk, and T.S. Duffy, “Strength and texture of sodium chloride to 56 GPa,” J. Appl. Phys. 123(13), 135901 (2018). (doi:10.1063/1.5022273) 12.2.2, 12.3.2

23. Morrison, R.Ann., J.M. Jackson, W. Sturhahn, D. Zhang, and E. Greenberg, “Equations of state and anisotropy of Fe-Ni-Si alloys,” J Geophys Res Solid Earth 123(6), 4647-4675 (2018). (doi:10.1029/2017JB015343) 12.2.2

24. O'Bannon, E.F., C.M. Beavers, M. Kunz, and Q. Williams, “High-pressure study of dravite tourmaline: Insights into the accommodating nature of the tourmaline structure,” Am. Mineral. 103(10), 1622-1633 (2018). (doi:10.2138/am-2018-6486) 12.2.2

25. Popple, D., E.. Schriber, M. Yeung, and J.Nathan. Hohman, “Competing Roles of Crystallization and Degradation of a Metal-Organic Chalcogenolate Assembly under Biphasic Solvothermal Conditions,” Langmuir 34(47), 14265-14273 (2018). (doi:10.1021/acs.langmuir.8b03282) 12.2.2, 7.3.3

26. Qiu, F., J.R. Edison, Z. Preisler, Y.-F. Zhang, G. Li, A. Pan, C.-H. Hsu, T.Marie. Mattox, P. Ercius, C. Song, K.C. Bustillo, M.A. Brady, E. Zaia, S. Jeong, J.B. Neaton, S. Du, S. Whitelam, and J.J. Urban, “Design Rules for Self-Assembly of 2D Nanocrystal/Metal-Organic Framework Superstructures,” Angewandte Chemie International Edition 57(40), 13172-13176 (2018). (doi:10.1002/anie.201807776) 12.2.2, 11.0.1.2

27. Raju, S.V., B.K. Godwal, A.K. Singh, R. Jeanloz, and S.K. Saxena, “High-pressure strengths of Ni3Al and Ni-Al-Cr,” J. Alloys Cmpd. 741, 642-647 (2018). (doi:10.1016/j.jallcom.2018.01.142) 12.2.2

28. Reagan, M.M., A.E. Gleason, J. Liu, M.J. Krawczynski, J.A. Van Orman, and W.L. Mao, “The effect of nickel on the strength of iron nickel alloys: Implications for the Earth's inner core,” Physics of the Earth and Planetary Interiors 283, 43-47 (2018). (doi:10.1016/j.pepi.2018.08.003) 12.2.2

29. Schlicker, L., A. Doran, P. Schneppmüller, A. Gili, M. Czasny, S. Penner, and A. Gurlo, “Transmission in situ and operando high temperature X-ray powder diffraction in variable gaseous environments,” Rev. Sci. Instrum. 89(3), 033904 (2018). (doi:10.1063/1.5001695) 12.2.2

30. Schlicker, L., M.F. Bekheet, A. Gili, A. Doran, A. Gurlo, K. Ploner, T. Schachinger, and S. Penner, “Hydrogen reduction and metal-support interaction in a metastable metal-oxide system: Pd on rhombohedral In2O3,” J. Solid State Chem. 266, 93-99 (2018). (doi:10.1016/j.jssc.2018.07.010) 12.2.2

31. Stan, C.V., C.M. Beavers, M. Kunz, and N. Tamura, “X-Ray Diffraction under Extreme Conditions at the Advanced Light Source,” Quantum Beam Sci 2(1), 4 (2018). (doi:10.3390/qubs2010004) 11.3.1, 12.2.1, 12.2.2, 12.3.2

32. Stavrou, E., Y. Yao, A.F. Goncharov, S.S. Lobanov, J.M. Zaug, H. Liu, E. Greenberg, and V. Prakapenka, “Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth‚Äôs Core Thermodynamic Conditions,” Physical Review Letters 120(9), 096001 (2018). (doi:10.1103/PhysRevLett.120.096001) 12.2.2

33. Vennari, C.Elizabeth., C.M. Beavers, and Q. Williams, “High-Pressure/Temperature Behavior of the Alkali/Calcium Carbonate Shortite (Na2Ca2(CO3)3): Implications for Carbon Sequestration in Earth's Transition Zone,” J Geophys Res Solid Earth 123(8), 6574-6591 (2018). (doi:10.1029/2018JB015846) 11.3.1, 12.2.2

34. Yan, H., F. Yang, D. Pan, Y. Lin, J.Nathan. Hohman, D. Solis-Ibarra, F.H. Li, J.P. Dahl, R.K. Carlson, B.A. Tkachenko, A.A. Fokin, P.R. Schreiner, G. Galli, W.L. Mao, Z.-X. Shen, and N. Melosh, “Sterically controlled mechanochemistry under hydrostatic pressure,” Nature 554(7693), 505-510 (2018). (doi:10.1038/nature25765) 11.3.1, 12.2.2

35. Zhang, F., H. Lou, S. Chen, X. Chen, Z. Zeng, J. Yan, W. Zhao, Y. Wu, Z. Lu, and Q. Zeng, “Effects of non-hydrostaticity and grain size on the pressure-induced phase transition of the CoCrFeMnNi high-entropy alloy,” J. Appl. Phys. 124(11), 115901 (2018). (doi:10.1063/1.5046180) 12.2.2

2017 Publications (46)

1. Abramson, E.H., O.Serge. Bollengier, and J.M. Brown, “Water-carbon dioxide solid phase equilibria at pressures above 4 GPa,” Scientific Reports 7(1), 821 (2017). (doi:10.1038/s41598-017-00915-0) 12.2.2

2. Adcock, C., O. Tschauner, E.M. Hausrath, A. Udry, S.N. Luo, Y. Cai, M. Ren, A. Lanzirotti, M. Newville, M. Kunz, and C. Lin, “Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate,” Nature Communications 8, 14667 (2017). (doi:10.1038/ncomms14667) 12.2.2

3. Bae, S., R. Taylor, D. Kilcoyne, J. Moon, and P. Monteiro, “Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate,” Materials 10(2), 131 (2017). (doi:10.3390/ma10020131) 5.3.2.1, 5.3.2.2, 12.2.2

4. Borstad, G.M., and J. Ciezak-Jenkins, “Hydrogen-Bonding Modification in Biuret Under Pressure,” Journal of Physical Chemistry A 121(4), 762-770 (2017). (doi:10.1021/acs.jpca.6b09670) 12.2.2

5. Cai, W., M. Dunuwille, J. He, T.V. Taylor, J.P. Hinton, M.C. MacLean, J.J. Molaison, A.M. Dos Santos, S. Sinogeikin, and S. Deemyad, “Deuterium Isotope Effects in Polymerization of Benzene under Pressure,” The Journal of Physical Chemistry Letters 8(8), 1856-1864 (2017). (doi:10.1021/acs.jpclett.7b00536) 12.2.2

6. Cai, W., R. Zhang, Y. Yao, and S. Deemyad, “Piezochromism and structural and electronic properties of benz[a]anthracene under pressure,” Phys. Chem. Chem. Phys. 19(8), 6216-6223 (2017). (doi:10.1039/C6CP08171A) 12.2.2

7. Chen, Y., F. Ke, P. Ci, C. Ko, T. Park, S. Saremi, H. Liu, Y. Lee, J. Suh, L.W. Martin, J.W. Ager, B. Chen, and J. Wu, “Pressurizing Field-Effect Transistors of Few-Layer MoS2 in a Diamond Anvil Cell,” Nano Letters 17(1), 194-199 (2017). (doi:10.1021/acs.nanolett.6b03785) 12.2.2

8. Chen, Y., S. Zhang, F. Ke, C. Ko, S. Lee, K. Liu, B. Chen, J.W. Ager, R. Jeanloz, V. Eyert, and J. Wu, “Pressure-Temperature Phase Diagram of Vanadium Dioxide,” Nano Letters 17(4), 2512-2516 (2017). (doi:10.1021/acs.nanolett.7b00233) 12.2.2

9. Ci, P., Y. Chen, J. Kang, R. Suzuki, H.S. Choe, J. Suh, C. Ko, T. Park, K. Shen, Y. Iwasa, S. Tongay, J.W. Ager, L.-W. Wang, and J. Wu, “Quantifying van der Waals Interactions in Layered Transition Metal Dichalcogenides from Pressure-Enhanced Valence Band Splitting,” Nano Letters 17(8), 4982-4988 (2017). (doi:10.1021/acs.nanolett.7b02159) 12.2.2

10. Ciezak-Jenkins, J., and T.A. Jenkins, “Shear induced weakening of the hydrogen bonding lattice of the energetic material 5,5‚Ä≤-Hydrazinebistetrazole at high-pressure,” J. Mol. Struct. 1129, 313-318 (2017). (doi:10.1016/j.molstruc.2016.09.084) 12.2.2

11. Ciezak-Jenkins, J., B.A. Steele, G.M. Borstad, and I.I. Oleynik, “Structural and spectroscopic studies of nitrogen-carbon monoxide mixtures: Photochemical response and observation of a novel phase,” The Journal of Chemical Physics 146(18), 184309 (2017). (doi:10.1063/1.4983040) 12.2.2

12. Ciezak-Jenkins, J., G.M. Borstad, and I.G. Batyrev, “Characterization of the Isothermal Compression Behavior of LLM-172,” Journal of Physical Chemistry A 121(22), 4263-4271 (2017). (doi:10.1021/acs.jpca.7b03300) 12.2.2

13. Doran, A., L. Schlicker, C.M. Beavers, S. Bhat, M.F. Bekheet, and A. Gurlo, “Compact low power infrared tube furnace for in situ X-ray powder diffraction,” Rev. Sci. Instrum. 88(1), 013903 (2017). (doi:10.1063/1.4973561) 12.2.2

14. E. Vennari, C., E.F. O‚ÄôBannon, and Q. Williams, “The ammonium ion in a silicate under compression: infrared spectroscopy and powder X-ray diffraction of NH4AlSi3O8--buddingtonite to 30 GPa,” Physics and Chemistry of Minerals 44(2), 149-161 (2017). (doi:10.1007/s00269-016-0844-3) 12.2.2

15. Gainey, S., E.M. Hausrath, C. Adcock, O. Tschauner, J.A. Hurowitz, B.L. Ehlmann, Y. Xiao, and C.Lea. Bartlett, “Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars,” Nature Communications 8(1), 1230 (2017). (doi:10.1038/s41467-017-01235-7) 12.2.2

16. Geng, G., R.Jacob. Myers, J. Li, R. Maboudian, C. Carraro, D.A. Shapiro, and P.M. Monteiro, “Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate,” Scientific Reports 7, 44032 (2017). (doi:10.1038/srep44032) 5.3.2.1, 12.2.2

17. Geng, G., R.Jacob. Myers, M.J. Qomi, and P. Monteiro, “Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate,” Scientific Reports 7(1), 10986 (2017). (doi:10.1038/s41598-017-11146-8) 12.2.2

18. Gleason, A.E., C.A. Bolme, H.J. Lee, B. Nagler, E.C. Galtier, R.G. Kraus, R.L. Sandberg, W. Yang, F. Langenhorst, and W.L. Mao, “Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation,” Nature Communications 8(1), 1481 (2017). (doi:10.1038/s41467-017-01791-y) 12.2.2

19. Gomis, O., B. Lavina, P. Rodríguez-Hernández, A. Muñoz, R. Errandonea, D. Errandonea, and M. Bettinelli, “High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4,” Journal of Physics: Condensed Matter 29(9), 095401 (2017). (doi:10.1088/1361-648X/aa516a) 12.2.2

20. Groome, C., I. Roh, T.Marie. Mattox, and J.J. Urban, “Effects of Size and Structural Defects on the Vibrational Properties of Lanthanum Hexaboride Nanocrystals,” ACS Omega 2(5), 2248-2254 (2017). (doi:10.1021/acsomega.7b00263) 12.2.2

21. Hong, F., B. Yue, Z. Liu, B. Chen, and H.-K. Mao, “Pressure-driven semiconductor-semiconductor transition and its structural origin in oxygen vacancy ordered SrCoO2.5,” Physical Review B 95(2), 024115 (2017). (doi:10.1103/PhysRevB.95.024115) 12.2.2

22. Jaffe, A., Y. Lin, W.L. Mao, and H.I. Karunadasa, “Pressure-Induced Metallization of the Halide Perovskite (CH3NH3)PbI3,” Journal of the American Chemical Society 139(12), 4330-4333 (2017). (doi:10.1021/jacs.7b01162) 12.2.2

23. Kapustin, E., S. Lee, A.S. Alshammari, and O.M. Yaghi, “Molecular Retrofitting Adapts a Metal-Organic Framework to Extreme Pressure,” ACS Cent Sci 3(6), 662-667 (2017). (doi:10.1021/acscentsci.7b00169) 12.2.2

24. Köck, E.-M., M. Kogler, T. Götsch, L. Schlicker, M.F. Bekheet, A. Doran, A. Gurlo, B. Klötzer, B. Petermüller, D. Schildhammer, N. Yigit, and S. Penner, “Surface chemistry of pure tetragonal ZrO2 and gas-phase dependence of the tetragonal-to-monoclinic ZrO2 transformation,” Dalton Trans. 46(14), 4554-4570 (2017). (doi:10.1039/C6DT04847A) 12.2.2

25. Köck, E.-M., M. Kogler, C. Zhuo, L. Schlicker, M.F. Bekheet, A. Doran, A. Gurlo, and S. Penner, “Surface Chemistry and Stability of Metastable Corundum-Type In2O3,” Phys. Chem. Chem. Phys. 19(29), 19407-19419 (2017). (doi:10.1039/C7CP03632A) 12.2.2

26. Mattox, T.Marie., C. Groome, A. Doran, C.M. Beavers, and J.J. Urban, “Anion-mediated negative thermal expansion in lanthanum hexaboride,” Solid State Commun. 265, 47-51 (2017). (doi:10.1016/j.ssc.2017.07.012) 12.2.2

27. Nisr, C., Y. Meng, A.A. MacDowell, J. Yan, V. Prakapenka, and S.-H. Shim, “Thermal expansion of SiC at high pressure-temperature and implications for thermal convection in the deep interiors of carbide exoplanets,” Journal of Geophysical Research: Planets 122(1), 124-133 (2017). (doi:10.1002/2016JE005158) 12.2.2

28. O'Bannon, E.F., C.M. Beavers, M. Kunz, and Q. Williams, “The high-pressure phase of lawsonite: A single crystal study of a key mantle hydrous phase,” J Geophys Res Solid Earth 122(8), 6294-6305 (2017). (doi:10.1002/2017JB014344) 11.3.1, 12.2.2

29. Raju, S.V., R. Hrubiak, V. Drozd, and S. Saxena, “Laser-assisted processing of Ni-Al-Co-Ti under high pressure,” Mater. Manuf. Processes 32(14), 1606-1611 (2017). (doi:10.1080/10426914.2016.1269913) 12.2.2

30. Rittman, D., S. Park, C.Lee. Tracy, L. Zhang, R.I. Palomares, M. Lang, A. Navrotsky, W.L. Mao, and R.C. Ewing, “Structure and bulk modulus of Ln-doped UO2 (Ln = La, Nd) at high pressure,” Journal of Nuclear Materials 490, 28-33 (2017). (doi:10.1016/j.jnucmat.2017.04.007) 12.2.2

31. Rittman, D., K.M. Turner, S. Park, A.F. Fuentes, J. Yan, R.C. Ewing, and W.L. Mao, “High-pressure behavior of A2B2O7 pyrochlore (A=Eu, Dy; B=Ti, Zr),” J. Appl. Phys. 121(4), 045902 (2017). (doi:10.1063/1.4974871) 12.2.2

32. Rittman, D., K.M. Turner, S. Park, A.F. Fuentes, C. Park, R.C. Ewing, and W.L. Mao, “Strain engineered pyrochlore at high pressure,” Scientific Reports 7(1), 2236 (2017). (doi:10.1038/s41598-017-02637-9) 12.2.2

33. Rodenbough, P.P., and S.-W. Chan, “Crystallite-size dependency of the pressure and temperature response in nanoparticles of magnesia,” Journal of Nanoparticle Research 19(7), 241 (2017). (doi:10.1007/s11051-017-3922-7) 12.2.2

34. Ryu, Y.-J., C.-S. Yoo, M. Kim, X. Yong, J. Tse, S.K. Lee, and E.Jooyung. Kim, “Hydrogen-Doped Polymeric Carbon Monoxide at High Pressure,” Journal of Physical Chemistry C 121(18), 10078-1008 (2017). (doi:10.1021/acs.jpcc.7b01506) 12.2.2

35. Santamaria-Perez, D., T. Marqueño, S. MacLeod, J. Ruiz-Fuertes, D. Daisenberger, R. Chuliá-Jordan, D. Errandonea, J.L. Jordá, F. Rey, C. McGuire, A. Mahkluf, A. Kavner, and C. Popescu, “Structural Evolution of CO2-Filled Pure Silica LTA Zeolite under High-Pressure High-Temperature Conditions,” Chem. Mater. 29(10), 4502-4510 (2017). (doi:10.1021/acs.chemmater.7b01158) 12.2.2

36. Schlicker, L., M.F. Bekheet, and A. Gurlo, “Scaled-up solvothermal synthesis of nanosized metastable indium oxyhydroxide (InOOH) and corundum-type rhombohedral indium oxide (rh-In2O3),” Z. Kristallogr. 232(1-3), 129-140 (2017). (doi:10.1515/zkri-2016-1967) 12.2.2

37. Slavney, A., R. Smaha, I.C. Smith, A. Jaffe, D. Umeyama, and H.I. Karunadasa, “Chemical Approaches to Addressing the Instability and Toxicity of Lead-Halide Perovskite Absorbers,” Inorganic Chemistry 56(1), 46-55 (2017). (doi:10.1021/acs.inorgchem.6b01336) 11.3.1, 12.2.2

38. Song, Z., F. Qiu, E. Zaia, Z. Wang, M. Kunz, J. Guo, M.A. Brady, B. Mi, and J.J. Urban, “Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation,” Nano Letters 17(11), 6752-6758 (2017). (doi:10.1021/acs.nanolett.7b02910) 12.2.2

39. Stavrou, E., J.M. Zaug, S. Bastea, and M. Kunz, “A study of tantalum pentoxide Ta2O5 structures up to 28 GPa,” J. Appl. Phys. 121(17), 175901 (2017). (doi:10.1063/1.4982708) 12.2.2

40. Steele, B.A., E. Stavrou, J.Charles. Crowhurst, J.M. Zaug, V. Prakapenka, and I.I. Oleynik, “High-Pressure Synthesis of a Pentazolate Salt,” Chem. Mater. 29(2), 735-741 (2017). (doi:10.1021/acs.chemmater.6b04538) 12.2.2

41. Turner, K.M., D. Rittman, R.A. Heymach, C.Lee. Tracy, M.L. Turner, A.F. Fuentes, W.L. Mao, and R.C. Ewing, “Pressure-induced structural modifications of rare-earth hafnate pyrochlore,” Journal of Physics: Condensed Matter 29(25), 255401 (2017). (doi:10.1088/1361-648X/aa7148) 12.2.2

42. Turner, K.M., C.Lee. Tracy, W.L. Mao, and R.C. Ewing, “Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln = Nd, Gd, Er) at high pressure,” Journal of Physics: Condensed Matter 29(50), 504005 (2017). (doi:10.1088/1361-648X/aa9960) 12.2.2

43. Wicks, J.K., J.M. Jackson, W. Sturhahn, and D. Zhang, “Sound velocity and density of magnesiowüstites: Implications for ultralow-velocity zone topography,” Geophys. Res. Lett. 44(5), 2148-2158 (2017). (doi:10.1002/2016GL071225) 12.2.2

44. Zhang, F., Y. Wu, H. Lou, Z. Zeng, V. Prakapenka, E. Greenberg, Y. Ren, J. Yan, J.S. Okasinski, X. Liu, Y. Liu, Q. Zeng, and Z. Lu, “Polymorphism in a high-entropy alloy,” Nature Communications 8, 15687 (2017). (doi:10.1038/ncomms15687) 12.2.2

45. Zhou, X., N. Tamura, Z. Mi, J. Lei, J. Yan, L. Zhang, W. Deng, F. Ke, B. Yue, and B. Chen, “Reversal in the Size Dependence of Grain Rotation,” Physical Review Letters 118(9), 096101 (2017). (doi:10.1103/PhysRevLett.118.096101) 12.2.2, 12.3.2

46. Zhu, W., G. Moore, B. Aitken, S. Clark, and S. Sen, “Observation of Steady Shear-Induced Nematic Ordering of Selenium Chain Moieties in Arsenic Selenide Liquids,” Journal of Physical Chemistry B 121(32), 7715-7722 (2017). (doi:10.1021/acs.jpcb.7b05115) 12.2.2


2016 Publications (29)

1. Bae, Y.e., E.n. Cho, F. Qiu, D.T. Sun, T.E. Williams, J.J. Urban, and W.L. Queen, “Transparent Metal‚ÄìOrganic Framework/Polymer Mixed Matrix Membranes as Water Vapor Barriers,” ACS Applied Materials 8(16), 10098-1010 (2016). (doi:10.1021/acsami.6b01299) 12.2.2

2. Barreda-Argüeso, J.o., F. Aguado, J. González, R. Valiente, L. Nataf, M.N. Sanz-Ortiz, and F. Rodríguez, “Crystal-Field Theory Validity Through Local (and Bulk) Compressibilities in CoF2 and KCoF3,” Journal of Physical Chemistry C 120(33), 18788-1879 (2016). (doi:10.1021/acs.jpcc.6b06132) 12.2.2

3. Borstad, G.M., I.G. Batyrev, and J. Ciezak-Jenkins, “Cyanoacetohydrazide under Pressure: Chemical Changes in a Hydrogen-Bonded Material,” Journal of Physical Chemistry A 120(17), 2712-2719 (2016). (doi:10.1021/acs.jpca.5b11954) 12.2.2

4. Chen, Y., S. Zhang, W. Gao, F. Ke, J. Yan, B. Saha, C. Ko, B. Chen, J.W. Ager III, W. Walukiewicz, R. Jeanloz, and J. Wu, “Pressure-induced structural transition of CdxZn1-xO alloys,” Applied Physics Letters 108(15), 152105 (2016). (doi:10.1063/1.4947022) 12.2.2

5. Ciezak-Jenkins, J., “High-pressure polymorphism of the electrochemically active organic molecule tetrahydroxy-p-benzoquinone,” J. Mol. Struct. 1119, 71-77 (2016). (doi:10.1016/j.molstruc.2016.04.062) 12.2.2

6. Du, W., S.Anna. Clark, and D. Walker, “Excess mixing volume, microstrain, and stability of pyrope-grossular garnets,” Am. Mineral. 101(1), 193-204 (2016). (doi:10.2138/am-2016-5128) 12.2.2

7. Gleissner, J., D. Errandonea, A. Segura, J. Pellicer-Porres, M.A. Hakeem, J.E. Proctor, S.V. Raju, R.S. Kumar, P. Rodríguez-Hernández, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “Monazite-type SrCrO4 under compression,” Physical Review B 94(13), 134108 (2016). (doi:10.1103/PhysRevB.94.134108) 12.2.2

8. Hong, F., B. Yue, Z. Chen, M. Kunz, B. Chen, and H.-K. Mao, “High pressure polymorphs and amorphization of upconversion host material NaY(WO4)2,” Applied Physics Letters 109, 041907 (2016). (doi:10.1063/1.4960104) 12.2.2

9. Jaffe, A., Y. Lin, C.M. Beavers, J. Voss, W.L. Mao, and H.I. Karunadasa, “High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties,” ACS Cent Sci 2(4), 201-209 (2016). (doi:10.1021/acscentsci.6b00055) 11.3.1, 12.2.2

10. Lech, A.T., C. Turner, J. Lei, R. Mohammadi, S. Tolbert, and R.B. Kaner, “Superhard Rhenium/Tungsten Diboride Solid Solutions,” Journal of the American Chemical Society 138(43), 14398-1440 (2016). (doi:10.1021/jacs.6b08616) 12.2.2

11. Liu, G., L. Kong, J. Yan, Z. Liu, H. Zhang, P. Lei, T. Xu, H.-k. Mao, and B. Chen, “Nanocrystals in compression: unexpected structural phase transition and amorphization due to surface impurities,” Nanoscale 8(23), 11803-11809 (2016). (doi:10.1039/C5NR09027J) 12.2.2

12. Luz, I., A. Loiudice, D.T. Sun, W.L. Queen, and R. Buonsanti, “Understanding the Formation Mechanism of Metal Nanocrystal@MOF-74 Hybrids,” Chem. Mater. 28(11), 3839-3849 (2016). (doi:10.1021/acs.chemmater.6b00880) 12.2.2

13. Miyagi, L., and H. Wenk, “Texture development and slip systems in bridgmanite and bridgmanite + ferropericlase aggregates,” Physics and Chemistry of Minerals 43(8), 597-613 (2016). (doi:10.1007/s00269-016-0820-y) 12.2.2

14. O'Bannon, E.F., and Q. Williams, “Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa,” Physics and Chemistry of Minerals 43(9), 671-687 (2016). (doi:10.1007/s00269-016-0837-2) 12.2.2

15. Raju, S.V., B.K. Godwal, J. Yan, R. Jeanloz, and S.K. Saxena, “Yield strength of Ni‚ÄìAl‚ÄìCr superalloy under pressure,” J. Alloys Cmpd. 657, 889-892 (2016). (doi:10.1016/j.jallcom.2015.10.092) 12.2.2

16. Rasmussen, A.M., E. Mafi, W. Zhu, Y.i. Gu, and M.D. McCluskey, “High pressure Œ≥-to-β phase transition in bulk and nanocrystalline In2Se3,” High Pressure Research 36(4), 549-556 (2016). (doi:10.1080/08957959.2016.1214729) 12.2.2

17. Reagan, M.M., A.E. Gleason, L. Daemen, Y. Xiao, and W.L. Mao, “High-pressure behavior of the polymorphs of FeOOH,” Am. Mineral. 101(6), 1483-1488 (2016). (doi:10.2138/am-2016-5449) 12.2.2

18. Santamaria-Perez, D., C. McGuire, A.Rafiq. Makhluf, A. Kavner, R. Chuliá-Jordán, J. Pellicer-Porres, D. Martinez-García, A. Doran, M. Kunz, P. Rodríguez-Hernández, and A. Muñoz, “Exploring the Chemical Reactivity between Carbon Dioxide and Three Transition Metals (Au, Pt, and Re) at High-Pressure, High-Temperature Conditions,” Inorganic Chemistry 55(20), 10793-1079 (2016). (doi:10.1021/acs.inorgchem.6b01858) 12.2.2

19. Santamaria-Perez, D., C. McGuire, A.Rafiq. Makhluf, A. Kavner, R. Chuliá-Jordan, J.L. Jorda, F. Rey, J. Pellicer-Porres, D. Martinez-García, P. Rodriguez-Hernández, and A. Muñoz, “Correspondence: Strongly-driven Re+CO2 redox reaction at high-pressure and high-temperature,” Nature Communications 7, 13647 (2016). (doi:10.1038/ncomms13647) 12.2.2

20. Solomatova, N.V., J.M. Jackson, W. Sturhahn, J.K. Wicks, J. Zhao, T.S. Toellner, B. Kalkan, and W.M. Steinhardt, “Equation of state and spin crossover of (Mg,Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary,” Am. Mineral. 101(5), 1084-1093 (2016). (doi:10.2138/am-2016-5510) 12.2.2

21. Stavrou, E., Y. Yao, J.M. Zaug, S. Bastea, B. Kalkan, Z. Konopkova, and M. Kunz, “High-pressure X-ray diffraction, Raman, and computational studies of MgCl2 up to 1 Mbar: Extensive pressure stability of the β-MgCl2 layered structure,” Scientific Reports 6, 30631 (2016). (doi:10.1038/srep30631) 12.2.2

22. Steiner, M.H., E.M. Hausrath, M.E. Elwood Madden, O. Tschauner, B.L. Ehlmann, A.A. Olsen, S. Gainey, and J.S. Smith, “Dissolution of nontronite in chloride brines and implications for the aqueous history of Mars,” Geochim. Cosmochim. Acta 195, 259-276 (2016). (doi:10.1016/j.gca.2016.08.035) 12.2.2

23. Su, N.C., D.T. Sun, C.M. Beavers, D.K. Britt, W.L. Queen, and J. Urban, “Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes,” Energy Environ. Sci. 9, 922-931 (2016). (doi:10.1039/C5EE02660A) 12.2.2

24. Tschauner, O., S.V. Ushakov, A. Navrotsky, and L. Boatner, “Phase transformations and indications for acoustic mode softening in Tb-Gd orthophosphate,” Journal of Physics: Condensed Matter 28(3), 035403 (2016). (doi:10.1088/0953-8984/28/3/035403) 12.2.2

25. Umeyama, D., Y.u. Lin, and H.I. Karunadasa, “Red-to-Black Piezochromism in a Compressible Pb‚ÄìI‚ÄìSCN Layered Perovskite,” Chem. Mater. 28(10), 3241-3244 (2016). (doi:10.1021/acs.chemmater.6b01147) 12.2.2

26. Wang, Y., L. Wang, H. Zheng, K. Li, M. Andrzejewski, T. Hattori, A. Sano-Furukawa, A. Katrusiak, Y. Meng, F. Liao, F. Hong, and H.-k. Mao, “Phase Transitions and Polymerization of C6H6-C6F6 Cocrystal under Extreme Conditions,” Journal of Physical Chemistry C 120(51), 29510-29519 (2016). (doi:10.1021/acs.jpcc.6b11245) 12.2.2

27. Yeung, M., J. Lei, R. Mohammadi, C. Turner, Y. Wang, S. Tolbert, and R.B. Kaner, “Superhard Monoborides: Hardness Enhancement through Alloying in W1‚àíxTaxB,” Advanced Materials 28(32), 6993-6998 (2016). (doi:10.1002/adma.201601187) 12.2.2

28. Yue, B., F. Hong, S. Merkel, D. Tan, J. Yan, B. Chen, and H.-K. Mao, “Deformation Behavior across the Zircon-Scheelite Phase Transition,” Physical Review Letters 117(13), 135701 (2016). (doi:10.1103/PhysRevLett.117.135701) 12.2.2

29. Zhao, Z., H. Wei, and W.L. Mao, “Pressure tuning the lattice and optical response of silver sulfide,” Applied Physics Letters 108(26), 261902 (2016). (doi:10.1063/1.4954801) 12.2.2

2015 Publications (24)

1. Baumeister, J.L., E. Hausrath, A.A. Olsen, O. Tschauner, C. Adcock, and R.V. Metcalf, “Biogeochemical weathering of serpentinites: An examination of incipient dissolution affecting serpentine soil formation,” Applied Geochemistry 54, 74-84 (2015). (doi:10.1016/j.apgeochem.2015.01.002) 12.2.2, 12.3.2

2. Boulard, E., A.F. Goncharov, M. Blanchard, and W.L. Mao, “Pressure induced phase transition in MnCO3 and its implications on the deep carbon cycle,” 120(6), 4069-4079 (2015). (doi:10.1002/2015JB011901) 12.2.2

3. Du, W., S.M. Clark, and D. Walker, “Thermo-compression of pyrope-grossular garnet solid solutions: Non-linear compositional dependence,” Am. Mineral. 100(1), 215-222 (2015). (doi:10.2138/am-2015-4752) 12.2.2

4. Fan, W., X.i. Zhu, Feng Ke, Yabin Chen, Kaichen Dong, J. Ji, B. Chen, Sefaattin Tongay, Joel W. Ager, K. Liu, Haibin Su, and Junqiao Wu, “Vibrational spectrum renormalization by enforced coupling across the van der Waals gap between MoS2 and WS2 monolayers,” Physical Review B 92(24), 241408 (2015). (doi:10.1103/PhysRevB.92.241408) 12.2.2

5. Geng, G., R. Taylor, S. Bae, D. Hernandez-Cruz, D.A. Kilcoyne, A. Emwas, and P.J. Monteiro, “Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste,” Cement Contrete Res. 77, 36-46 (2015). (doi:10.1016/j.cemconres.2015.06.010) 5.3.2.2, 5.3.2.1, 12.2.2

6. Gilbert, B., L.R. Comolli, R.M. Tinnacher, M. Kunz, and J. Banfield, “Formation and restacking of disordered smectite osmotic hydrates,” Clays and Clay Minerals 63(6), 432-442 (2015). (doi:10.1346/CCMN.2015.0630602) 12.2.2, 12.3.2

7. Jaffe, A., Y. Lin, W.L. Mao, and H.I. Karunadasa, “Pressure-Induced Conductivity and Yellow-to-Black Piezochromism in a Layered Cu-Cl Hybrid Perovskite,” Journal of the American Chemical Society 137(4), 1673-1678 (2015). (doi:10.1021/ja512396m) 12.2.2, 11.3.1

8. Ma, C., O. Tschauner, J.R. Beckett, Y. Liu, G.R. Rossman, K. Zhuravlev, V. Prakapenka, P.K. Dera, and L.A. Taylor, “Tissintite, (Ca, Na, ‚ñ°)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite,” Earth and Planetary Science Letters 422, 194-205 (2015). (doi:10.1016/j.epsl.2015.03.057) 12.2.2

9. Marquardt, H.K., and L. Miyagi, “Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity,” Nature Geoscience 8, 311-314 (2015). (doi:10.1038/ngeo2393) 12.2.2

10. Miller, Reece G., Suresh Narayanaswamy, Simon M. Clark, P.K. Dera, Geoffrey Jameson, Jeffery Tallon, and Sally Brooker, “Pressure induced separation of phase-transition-triggered-abrupt vs. gradual components of spin crossover,” Dalton Trans. 44(48), 20843-2084 (2015). (doi:10.1039/C5DT03795F) 12.2.2

11. Moon, J., S. Yoon, and P.J.M. Monteiro, “Mechanical properties of jennite: A theoretical and experimental study,” Cement Contrete Res. 71, 106-114 (2015). (doi:10.1016/j.cemconres.2015.02.005) 12.2.2

12. Palaich, S.E., R. Heffern, A. Watenphul, J. Knight, and A. Kavner, “High-pressure compressibility and phase stability of Mn-dolomite (kutnohorite),” Am. Mineral. 100(10), 2242-2245 (2015). (doi:10.2138/am-2015-5095) 12.2.2

13. Raju, S.V., A.A. Oni, B.K. Godwal, J. Yan, V. Drozd, S. Srinivasan, J.M. Lebbeau, K. Rajan, and S.K. Saxena, “Effect of B and Cr on elastic strength and crystal structure of Ni3Al alloys under high pressure,” J. Alloys Cmpd. 619, 616-620 (2015). (doi:10.1016/j.jallcom.2014.09.012) 12.2.2

14. Rodenbough, P.P., J. Song, D. Walker, S.M. Clark, B. Kalkan, and S.W. Chan, “Size dependent compressibility of nano-ceria: Minimum near 33 nm,” Applied Physics Letters 106(16), 163101 (2015). (doi:10.1063/1.4918625) 12.2.2

15. Ryu, Y.J., M. Kim, and C-S. Yoo, “Phase Diagram and Transformations of Iron Pentacarbonyl to nm Layered Hematite and Carbon-Oxygen Polymer under Pressure,” Scientific Reports 5, 15139 (2015). (doi:10.1038/srep15139) 12.2.2

16. Serdar, M., C. Meral, M. Kunz, D. Bjegovic, H. Wenk, and P.J.M. Monteiro, “Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete,” Cement Contrete Res. 71, 93-105 (2015). (doi:10.1016/j.cemconres.2015.02.004) 12.2.2, 12.3.2

17. Solis-Ibarra, D., C. Smith, and H.I. Karunadasa, “Post-synthetic halide conversion and selective halogen capture in hybrid perovskites,” Chem. Sci. 6(7), 4054-4059 (2015). (doi:10.1039/c5sc01135c) 11.3.1, 12.2.2

18. Song, J., P.P. Rodenbou, W. Xu, S. Senanayake, and S.-W. Chan, “Reduction of Nano Cu2O: Crystallite-Size Dependent and the Effect of Nano-Ceria Support,” Journal of Physical Chemistry C 119(31), 17667-17672 (2015). (doi:10.1021/acs.jpcc.5b04121) 12.2.2

19. Stavrou, E., M. Riad Manaa, J. M. Zaug, I. F. Kuo, P. F. Pagoria, B. Kalkan, J.C. Crowhurst, and M. . Armstrong, “The high pressure structure and equation of state of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) up to 20 GPa: X-ray diffraction measurements and first principles molecular dynamics simulations,” The Journal of Chemical Physics 143(14), 144506 (2015). (doi:10.1063/1.4932683) 12.2.2

20. Walker, David, J. Li, B. Kalkan, and Simon M. Clark, “Thermal, compositional, and compressional demagnetization of cementite,” Am. Mineral. 100(11), 2610-2624 (2015). (doi:10.2138/am-2015-5306) 12.2.2

21. Wisser, M., M. Chea, Y. Lin, D.M. Wu, W.L. Mao, A. Salleo, and J.A. Dionne, “Strain-Induced Modification of Optical Selection Rules in LanthanideBased Upconverting Nanoparticles,” Nano Letters 15(3), 1891-1897 (2015). (doi:10.1021/nl504738k) 12.2.2

22. Xie, M., R. Mohammadi, C.L. Turner, R.B. Kaner, A. Kavner, and S. Tolbert, “Exploring hardness enhancement in superhard tungsten tetraboride-based solid solutions using radial X-ray diffraction,” Applied Physics Letters 107(4), 41903 (2015). (doi:10.1063/1.4927596) 12.2.2

23. Zeng, Z., Q. Zeng, N. Liu, A.R. Oganov, Q. Zeng, Y. Cui, and W.L. Mao, “A Novel Phase of Li15Si4 Synthesized under Pressure,” Advanced Energy Materials 5(12), 1500214 (2015). (doi:10.1002/aenm.201500214) 12.2.2

24. Zhao, Z., Q. Zeng, H. Zhang, S. Wang, S. Hirai, Z. Zeng, and W.L. Mao, “Structural transition and amorphization in compressed α-Sb2O3,” Physical Review B 91(18), 184112 (2015). (doi:10.1103/PhysRevB.91.184112) 12.2.2

2014 Publications (22)

1. Abdul-Jabbar, N., B. Kalkan, G-Y. Huang, A.A. MacDowell, R. Gronsky, E.D. Bourret-Courchesne, and B.D. Wirth, “The role of stoichiometric vacancy periodicity in pressure-induced amorphization of the Ga2SeTe2 semiconductor alloy,” Applied Physics Letters 105, 051908 (2014). (doi:10.1063/1.4892549) 12.2.2

2. Adcock, C., E. M. Hausrath, P. M. Forster, O. Tschauner, and K. J. Sefein, “Synthesis and characterization of the Mars-relevant phosphate minerals Fe- and Mg-whitlockite and merrillite and a possible mechanism that maintains charge balance during whitlockite to merrillite transformation,” Am. Mineral. 99(7), 1221-1232 (2014). (doi:10.2138/am.2014.4688) 12.2.2

3. An, K., S. Alayoglu, N. Musselwhite, K. Na, and G. Somorjai, “Designed Catalysts from Pt Nanoparticles Supported on Macroporous Oxides for Selective Isomerization of n-Hexane,” Journal of the American Chemical Society 136(19), 6830-6833 (2014). (doi:10.1021/ja5018656) 12.2.2

4. Bae, S., C. Meral, J.e. Oh, J. Moon, M. Kunz, and P.J.M. Monteiro, “Characterization of morphology and hydration products of high-volume fly ash paste by monochromatic scanning x-ray micro-diffraction (μ-SXRD),” Cement Contrete Res. 59, 155-164 (2014). (doi:10.1016/j.cemconres.2014.03.001) 12.3.2, 12.2.2

5. Bayarjargal, L., B. Winkler, A. Friedrich, and E.A. Juarez-Arellano, “Synthesis of TaC and Ta2C from tantalum and graphite in the laser-heated diamond anvil cell,” Chinese Science Bulletin 59(36), 5283-5289 (2014). (doi:10.1007/s11434-014-0546-5) 12.2.2

6. Chen, B., K.M. Lutker, J. Lei, J. Yan, S. Yang, and H. Mao, “Detecting Grain Rotation at the Nanoscale,” Proceedings of the National Academy of Sciences 111(9), 3350-3353 (2014). (doi:10.1073/pnas.1324184111) 12.2.2, 12.3.2

7. Fischer, R.A., A.J. Campbell, R. Caracas, D.M. Reaman, D.L. Heinz, P.K. Dera, and V. Prakapenka, “Equations of state in the Fe-FeSi system at high pressures and temperatures,” 119(4), 2810-2827 (2014). (doi:10.1002/2013JB010898) 12.2.2

8. Hargis, C.W., J. Moon, B. Lothenbach, F. Winnefeld, H. Wenk, and P.J.M. Monteiro, “Calcium Sulfoaluminate Sodalite (Ca4Al6O12SO4) Crystal Structure Evaluation and Bulk Modulus Determination,” Journal of the American Ceramic Society 97(3), 892-898 (2014). (doi:10.1111/jace.12700) 12.2.2

9. Kalkan, B., R.P. Dias, C.S. Yoo, S.M. Clark, and S. Sen, “Polyamorphism and Pressure-Induced Metallization at the Rigidity Percolation Threshold in Densified GeSe4 Glass,” Journal of Physical Chemistry C 118(10), 5110-5121 (2014). (doi:10.1021/jp4108602) 12.2.2

10. Melaet, G.M., W.T. Ralston, C.S. Li, S. Alayoglu, K. An, N. Musselwhite, B. Kalkan, and G.A. Samorjai, “Evidence of Highly Active Cobalt Oxide Catalyst for the Fischer-Tropsch Synthesis and CO2 Hydrogenation,” Journal of the American Chemical Society 136(6), 2260-2263 (2014). (doi:10.1021/ja412447q) 12.2.2, 10.3.2, 8.0.1.4

11. Moon, J., S. Bae, K. Celik, S. Yoon, K.H. Kim, K.S. Kim, and P. Monteiro, “Characterization of natural pozzolan-based geopolymeric binders,” Cement and Concrete Composites 53, 97-104 (2014). (doi:10.1016/j.cemconcomp.2014.06.010) 12.2.2

12. Musaev, O., J. Yan, V. Dusevich, J.M. Wrobel, and M.B. Kruger, “Ni nanoparticles fabricated by laser ablation in water,” Applied Physics A: Materials Science & Processing 116(2), 735-739 (2014). (doi:10.1007/s00339-014-8569-y) 12.2.2

13. O'Bannon, E.F., C.M. Beavers, and Q. Williams, “Trona at extreme conditions: A pollutant-sequestering material at high pressures and low temperatures,” Am. Mineral. 99(10), 1973-1984 (2014). (doi:10.2138/am-2014-4919) 11.3.1, 12.2.2, 1.4

14. Rainey, E., and A. Kavner, “Peak scaling method to measure temperaturesin the laser-heated diamond anvil celland application to the thermalconductivity of MgO,” 119(11), 8154-8170 (2014). (doi:10.1002/2014JB011267) 12.2.2

15. Raju, S.V., Z.M. Geballe, B.K. Godwal, B. Kalkan, Q. Williams, and R. Jeanloz, “High pressure and temperature structure of liquid and solid Cd: Implications for the melting curve of Cd,” Materials Research Express 1(4), 046502 (2014). (doi:10.1088/2053-1591/1/4/046502) 12.2.2

16. Tan, D., W. Zhou, W. Ouyang, Z.M. Mi, L. Kong, W. Xiao, K. Zhu, and B. Chen, “Growth of magnesium aluminate nanocrystallites,” CrystEngComm 16, 1579-1583 (2014). (doi:10.1039/c3ce41718b) 12.2.2

17. Tongay, S., H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. Huang, C. Ho, J. Yan, D. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nature Communications 5, 3252 (2014). (doi:10.1038/ncomms4252) 12.2.2

18. Tu, V., E. Hausrath, O. Tschauner, V. Iota, and G.W. Egeland, “Dissolution rates of amorphous Al- and Fe-phosphates and their relevance to phosphate mobility on Mars ,” Am. Mineral. 99(7), 1206 (2014). (doi:10.2138/am.2014.4613) 12.2.2

19. Wang, S., J. Zhang, J. Yan, X.J. Chen, V. Struzhkin, W. Tabis, N. Barisic, M.K. Chan, C. Dorrow, X. Zhao, M. Greven, W.L. Mao, and T. Geballe, “Strain derivatives of Tc in HgBa2CuO4+δ: The CuO2 plane alone is not enough,” Physical Review B 89, 024515 (2014). (doi:10.1103/PhysRevB.89.024515) 12.2.2

20. Wenk, H., L. Lutterotti, P.M. Kaercher, W. Kanitpanyacharoen, L. Miyagi, and R. Vasin, “Rietveld texture analysis from synchrotron diffraction images. II. Complex multiphase materials and diamond anvil cell experiments,” Powder Diffraction 29(3), 220-232 (2014). (doi:10.1017/S0885715614000360) 12.2.2

21. Xie, M., R. Mohammadi, C.L. Turner, R.B. Kaner, A. Kavner, and S. Tolbert, “Lattice stress states of superhard tungsten tetraboride from radial x-ray diffraction under nonhydrostatic compression,” Physical Review B 90, 104104 (2014). (doi:10.1103/PhysRevB.90.104104) 12.2.2

22. Yang, F., Y. Lin, J.E.P Dahl, R.M.K Carlson, and W.L. Mao, “Deviatoric stress-induced phase transitions in diamantane,” The Journal of Chemical Physics 141(15), 154305 (2014). (doi:10.1063/1.4897252) 12.2.2

2013 Publications (32)

  1. 1. Alayoglu, S., K. An, G.D. Melaet, S. Chen, F. Bernardi, L.W. Wang, A.E. Lindeman, N. Musselwhite, J. Guo, Z. Liu, M.A. Marcus, and G. Somorjai, “Pt-mediated Reversible Reduction and Expansion of CeO2 in Pt Nanoparticle/mesoporous CeO2: In-situ X-ray Spectroscopy and Diffraction Studies under Redox (H2 and O2) Atmospheres,” Journal of Physical Chemistry C 117(50), 26608-26616 (2013). (doi:10.1021/jp407280e) 9.3.2, 7.0.1.1, 10.3.2, 12.2.2

2. Chae, S.R., J. Moon, S. Yoon, S. Bae, P. Levitz, R.P. Winarski, and P. Monteiro, “Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review,” International Journal of Concrete Structures and Materials 7(2), 95-110 (2013). (doi:10.1007/s40069-013-0036-1) 12.3.2, 5.3.2.1, 5.3.2.2, 12.2.2

3. Clark, S.M., K. Jeon, J.-Y. Chen, and C.-S. Yoo, “Few-layer graphene under high pressure: Raman and X-ray diffraction studies,” Solid State Commun. 154, 15-18 (2013). (doi:10.1016/j.ssc.2012.10.002) 12.2.2

4. Dera, P.K., K. Zhuravlev, V. Prakapenka, M. Rivers, G.Joel. Finkelstein, O. Tschauner, O. Grubor-Urosevic, S.M. Clark, and R.T. Downs, “High-pressure single-crystal micro- X-ray diffraction (SCmXRD) analysis with GSE_ADA/RSV software,” High Pressure Research 33(3), 466-484 (2013). (doi:10.1080/08957959.2013.806504) 12.2.2

5. Du, Z., L. Miyagi, G. Amulele, and K.M. Lee, “Efficient graphite ring heater suitable for diamond-anvil cells to 1300 K,” Rev. Sci. Instrum. 84, 024502 (2013). (doi:10.1063/1.4792395) 12.2.2

6. Edwards, T.G., I. Hung, Z. Gan, B. Kalkan, S. Raoux, and S. Sen, “Structural transformations in amorphous crystalline phase change of Ga-Sb alloys,” J. Appl. Phys. 114, 233512 (2013). (doi:10.1063/1.4854575) 12.2.2

7. Farfan, G.A., E. Boulard, S. Wang, and W.L. Mao, “Bonding and electronic changes in rhodochrosite at high pressure,” Am. Mineral. 98(10), 1817-1823 (2013). (doi:10.2138/am.2013.4497) 12.2.2

8. Fernandez-Martinez, A., B. Kalkan, S.M. Clark, and G. Waychunas, “Pressure-Induced Polyamorphism and Formation of Aragonitic Amorphous Calcium Carbonate,” Angewandte Chemie International Edition 52(32), 8354-8357 (2013). (doi:10.1002/anie.201302974) 12.2.2

9. Fischer, R.A., A.J. Campbell, D.Marcus. Reaman, N.A. Miller, D.L. Heinz, P.K. Dera, and V. Prakapenka, “Phase relations in the Fe-FeSi system at high pressures and temperatures,” Earth and Planetary Science Letters 373, 54-64 (2013). (doi:10.1016/j.epsl.2013.04.035) 12.2.2

10. Geballe, Z.M., S.V. Raju, B.K. Godwal, and R. Jeanloz, “Clapeyron slope reversal in the melting curve of AuGa2 at 5.5 GPa,” Journal of Physics: Condensed Matter 25(41), 415401 (2013). (doi:10.1088/0953-8984/25/41/415401) 12.2.2

11. Gleason, A.E., W.L. Mao, and J.Y. Zhao, “Sound velocities for hexagonally close-packed iron compressed hydrostatically to 136 GPa from phonon density of states,” Geophys. Res. Lett. 40(12), 2983-2987 (2013). (doi:10.1002/grl.50588) 12.2.2

12. Gleason, A.E., and W.L. Mao, “Strength of iron at core pressures and evidence for a weak Earths inner core,” Nature Geoscience 6, 571-574 (2013). (doi:10.1038/NGEO1808) 12.2.2

13. Gleason, A.E., C.E. Quiroga, A. Suzuki, R. Pentcheva, and W.L. Mao, “Symmetrization driven spin transition in e-FeOOH at high pressure,” Earth and Planetary Science Letters 379, 49-55 (2013). (doi:10.1016/j.epsl.2013.08.012) 12.2.2

14. Godwal, B.K., S. Stackhouse, J. Yan, S. Speziale, B. Militzer, and R. Jeanloz, “Codetermination of crystal structures at high pressure: Combined application of theory and experiment to the intermetallic compound AuGa2,” Physical Review B 87(10), 100101-1 (2013). (doi:10.1103/PhysRevB.87.100101) 12.2.2

15. Hausrath, E.M., and O. Tschauner, “Natural Fumarolic Alteration of Fluorapatite, Olivine, and Basaltic Glass, and Implications for Habitable Environments on Mars,” Astrobiology 13(11), 1049-1064 (2013). (doi:10.1089/ast.2013.0985) 12.2.2

16. Jackson, M.D., S.R. Chae, S.R. Mulcahy, C. Meral, R. Taylor, P. LI, J. Moon, S. Yoon, A.H. Emwas, G. Vola, H. Wenk, and P. Monteiro, “Unlocking the secrets of Al-tobermorite in Roman seawater concrete,” Am. Mineral. 98(10), 1669-1687 (2013). (doi:10.2138/am.2013.4484) 5.3.2.1, 5.3.2.2, 12.2.2, 12.3.2

17. Jackson, M.D., J. Moon, E. Gotti, R. Taylor, S.R. Chae, M. Kunz, A.H. Emwas, C. Meral, P. Guttmann, P. Levitz, H. Wenk, and P.M. Monteiro, “Material and Elastic Properties of Al-Tobermorite in Ancient Roman Seawater Concrete,” Journal of the American Ceramic Society 96(8), 2598-2606 (2013). (doi:10.1111/jace.12407) 12.3.2, 12.2.2

18. Juarez-Arellano, E.A., B. Winkler, A. Friedrich, L. Bayarjargal, W.W. Morgenroth, M. Kunz, and V. Milman, “In situ study of the formation of rhenium borides from the elements at high-(p, T) conditions: Extreme incompressibility of Re7B3 and formation of new phases,” Solid State Sciences 25, 85-92 (2013). (doi:10.1016/j.solidstatesciences.2013.07.020) 12.2.2, 12.3.2

19. Kalavathi, S., S.V. Raju, Q. Williams, P.h. Sahu, V.S. Sastry, and H.K. Sahu, “Pressure-induced frustration in charge ordered spinel AlV2O4,” Journal of Physics: Condensed Matter 25, 292201 (2013). (doi:10.1088/0953-8984/25/29/292201) 12.2.2

20. Kalkan, B., T.G. Edwards, and S. Sen, “Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb,” The Journal of Chemical Physics 139, 084507 (2013). (doi:10.1063/1.4818805) 12.2.2

21. Lei, J., B. Chen, S. Guo, K. Wang, L. Tan, E. Khosravi, J. Yan, S.V. Raju, and S. Yang, “Structural and mechanical stability of dilute yttrium doped chromium,” Applied Physics Letters 102, 021901-1-021901-4 (2013). (doi:10.1063/1.4775596) 12.2.2

22. Miyagi, L., W.Jane. Kanitpanyacharoen, S. Raju, P.M. Kaercher, J. Knight, A. McDowell, H. Wenk, Q. Williams, and E.Z. Alarcon, “Combined resistive and laser heating technique for in-situ radial x-ray diffraction in the diamond anvil cell at high pressure and temperature,” Rev. Sci. Instrum. 84(2), 025118 (2013). (doi:10.1063/1.4793398) 12.2.2

23. Moon, J., S. Speziale, C. Meral, B. Kalkan, S.M. Clark, and P.M. Monteiro, “Determination of the elastic properties of amorphous materials: Case study of alkali silica reaction gel,” Cement Contrete Res. 54, 55-60 (2013). (doi:10.1016/j.cemconres.2013.08.012) 12.2.2

24. Palaich, S.E., C.E. Manning, E. Schauble, and A. Kavner, “Spectroscopic and X-ray diffraction investigation of the behavior of hanksite and tychite at high pressures, and a model for the compressibility of sulfate minerals,” Am. Mineral. 98, 1543-1549 (2013). (doi:10.213&/am.2013.4384) 12.2.2

25. Rasmussen, A.M., S.Tesfai. Teklemichael, E. Mafi, Y. Gu, and M.D. McCluskey, “Pressure-induced phase transformation of In2Se3,” Applied Physics Letters 102(6), 062105 (2013). (doi:10.1063/1.4792313) 12.2.2

26. Tschauner, O., S.N. Luo, Y. Chen, A. McDowell, J. Knight, and S.M. Clark, “Shock synthesis of Lanthanum-III-pernitride,” High Pressure Research 33(1), 202-207 (2013). (doi:10.1080/08957959.2012.761214) 12.2.2

27. Tschauner, O., B. Kiefer, F. Tetard, K. Tait, J. Bourguille, A. Zerr, P.K. Dera, A. McDowell, J. Knight, and S.M. Clark, “Elastic moduli and hardness of highly incompressible platinum perpnictide PtAs[sub 2],” Applied Physics Letters 103(10), 101901 (2013). (doi:10.1063/1.4819143) 12.2.2

28. Wang, S., S. Hirai, M.C. Shapiro, S.C. Riggs, T.H. Geballe, W.L. Mao, and I.R. Fisher, “Pressure-induced symmetry breaking in tetragonal CsAuI3,” Physical Review B 87(5), 054104 (2013). (doi:10.1103/PhysRevB.87.054104) 12.2.2

29. Wenk, H., P.M. Kaercher, W.Jane. Kanitpanyacharoen, E. Zepeda-Alarcon, and Y. Wan, “Orientation Relations During the α-omega Phase Transition of Zirconium: In Situ Texture Observations at High Pressure and Temperature,” Physical Review Letters 111(19), 195701 (2013). (doi:10.1103/PhysRevLett.111.195701) 12.2.2

30. Zeng, Q., W.L. Mao, H. Sheng, Z. Zeng, Q. Hu, Y. Meng, H. Lou, F. Peng, W. Yang, S.V. Sinogeikin, and J.-Z. Jiang, “The Effect of Composition on Pressure-Induced Devitrification in Metallic Glass,” Applied Physics Letters 102(17), 171905 (2013). (doi:10.1063/1.4803539) 12.2.2

31. Zhang, D., J. Jackson, B. Chen, W. Sturhahn, J. Zhao, J. Yan, and R. Caracas, “Elasticity and lattice dynamics of enstatite at high pressure,” J Geophys Res Solid Earth 118(8), 4071-4082 (2013). (doi:10.1002/jgrb.50303) 12.2.2

32. Zhao, Z., S. Wang, H. Zhang, and W.L. Mao, “Pressure-induced structural transitions and metallization in Ag2Te,” Physical Review B 88(2), 024120 (2013). (doi:10.1103/PhysRevB.88.024120) 12.2.2

2012 publications (25)

1. Armstrong, L.S., M.J. Walter, J. Tuff, O. Lord, A.R. Lennie, A.K. Kleppe, and S.M. Clark, “Perovskite Phase Relations in the System CaO-MgO-TiO2-SiO2 and Implications for Deep Mantle Lithologies,” Journal of Petrology 53(3), 611-635 (2012). (doi:10.1093/petrology/egr073) 12.2.2

2. Armstrong, L.S., and M.J. Walter, “Tetragonal almandine pyrope phase (TAPP): Retrograde Mg-perovskite from subducted oceanic crust?,” European Journal of Mineralogy 24(4), 587-597 (2012). (doi:10.1127/0935-1221/2012/0024-2211) 12.2.2

3. Bayarjargal, L., L. Wiehl, A. Friedrich, B. Winkler, E.A. Juarez-Arrelano, W.W. Morgenroth, and E. Haussuhl, “Phase transitions in KIO3,” Journal of Physics: Condensed Matter 24(32), 325401 (2012). (doi:10.1088/0953-8984/24/32/325401) 12.2.2

4. Chen, B., J.J. Jackson, W. Sturhahn, D. Zhang, J. Zhao, J.K. Wicks, and C.A. Murphy, “Spin crossover equation of state and sound velocities for (Mg0.65Fe0.35)O ferropericlase to 140 GPa,” J Geophys Res Solid Earth 117, B08208 (2012). (doi:10.1029/2012JB009162) 12.2.2

5. Chen, B., K.M. Lutker, S.V. Raju, J. Yan, W.Jane. Kanitpanyacharoen, J. Lei, S. Yang, H. Wenk, H.K. Mao, and Q. Williams, “Texture of Nanocrystalline Nickel: Probing the Lower Size Limit of Dislocation Activity,” Science 338(6113), 1448-1451 (2012). (doi:10.1126/science.1228211) 12.2.2

6. Chen, Q., S. Holdsworth, J.P. Embs, V. Pomjakushin, B. Frick, and A. Braun, “High-temperature high pressure cell for neutron-scattering studies,” High Pressure Research 32(4), 471-481 (2012). (doi:10.1080/08957959.2012.725729) 12.2.2

7. Farfan, G.A., S. Wang, H. Ma, R. Caracas, and W.L. Mao, “Bonding and structural changes in siderite at high pressure,” Am. Mineral. 97, 1421-1426 (2012). (doi:10.2138/am.2012.4001) 12.2.2

8. Fernando, S., M. Baynes, B. Chen, J. Banfield, and H. Zhang, “Compressibility and structural stability of nanoparticulate goethite,” RSC Adv. 2(17), 6768-6772 (2012). (doi:10.1039/c2ra20217d) 12.2.2

9. Fischer, R.A., A.J. Campbell, R. Caracas, D.Marcus. Reaman, P.K. Dera, and V. Prakapenka, “Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core,” Earth and Planetary Science Letters 357-358, 268-276 (2012). (doi:10.1016/j.epsl.2012.09.022) 12.2.2

10. Godwal, B.K., J. Yan, S.M. Clark, and R. Jeanloz, “High-Pressure behavior of osmium: An analog for iron in Earth's core,” J. Appl. Phys. 111(11), 112608 (2012). (doi:10.1063/1.4726203) 12.2.2

11. Juarez-Arellano, E.A., M. Avdeev, S. Yakovlev, L. Lopez-de-la-Torre, L. Bayarjargal, B. Winkler, A. Friendrich, and V.V. Kharton, “High-pressure behavior and equations of state of the cobaltates YBaCo4O7, YBaCo4O7+d, YBaCoZn3O7 and BaCoO3-x,” J. Solid State Chem. 196, 209-216 (2012). (doi:10.1016/j.jssc.2012.05.044) 12.2.2

12. Kaercher, P.M., S. Speziale, W.Jane. Kanitpanyacharoen, and H. Wenk, “Crystallographic preferred orientation in wustite (FeO) through the cubic-to-rhombohedral phase transition,” Physics and Chemistry of Minerals 39(8), 613-626 (2012). (doi:10.1007/s00269-012-0516-x) 12.2.2

13. Kalkan, B., S. Sen, J.-Y. Cho, Y.-C. Joo, and S.M. Clark, “Observation of polyamorphism in the phase change alloy Ge1Sb2Te4,” Applied Physics Letters 101, 151906-151906-5 (2012). (doi:10.1063/1.4759106) 12.2.2

14. Kalkan, B., C. Sonneville, C. Martinet, B. Champagnon, B.G. Aitken, S.M. Clark, and S. Sen, “Hysteretically reversible phase transition in a molecular glass,” The Journal of Chemical Physics 137(22), 224503-224503-8 (2012). (doi:10.1063/1.4769794) 12.2.2

15. Kalkan, B., S. Suzer, and E. Ozdas, “The compressibility of high purity YbB2,” Journal of Physics: Condensed Matter 24(34), 345401-345401-6 (2012). (doi:10.1088/0953-8984/24/34/345401) 12.2.2

16. Kanitpanyacharoen, W.Jane., L. Miyagi, P.M. Kaercher, Y. Wang, H. Wenk, S. Merker, and C.M. Tome, “Significance of mechanical twinning in hexagonal metals at high pressure,” Acta Materialia 60(1), 430-442 (2012). (doi:10.1016/j.actamat.2011.07.055) 12.2.2

17. Lord, O., L. Vocadlo, I.G. Wood, D.P. Dobson, S.M. Clark, and M.J. Walter, “High-pressure phase transitions and equations of state in NiSi. II. Experimental results,” J. Appl. Crystallogr. 45(4), 726-737 (2012). (doi:10.1107/S0021889812016809) 12.2.2

18. Mohammadi, R., M. Xie, A.T. Lech, C.L. Turner, A. Kavner, S. Tolbert, and R.B. Kaner, “Toward Inexpensive Superhard Materials: Tungsten Tetraboride-Based Solid Solutions,” Journal of the American Chemical Society 134(51), 20660-20668 (2012). (doi:10.1021/ja308219r) 12.2.2

19. Moon, J., J.E. Oh, B. Balonis, F.P. Glasser, S.M. Clark, and P.M. Monteiro, “High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO.Al2O3.CaCO3.11H2O,” Cement Contrete Res. 42(1), 105-110 (2012). (doi:10.1016/j.cemconres.2011.08.004) 12.2.2

20. Moon, J., S. Yoon, R.M. Wentzcovitch, S.M. Clark, and P.M. Monteiro, “Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations,” Journal of the American Ceramic Society 95(9), 2972-2978 (2012). (doi:10.1111/j.1551-2916.2012.05301.x) 12.2.2

21. Oh, J.E., S.M. Clark, H. Wenk, A.R. Kampf, and P.M. Monteiro, “Experimental Determination of Bulk Modulus of 14Å Tobermorite Using High Pressure Synchrotron X-ray Diffraction,” Cement Contrete Res. 42(2), 397-403 (2012). (doi:10.1016/j.cemconres.2011.11.004) 12.2.2

22. Oh, J.E., J. Moon, S.M. Clark, and P.M. Monteiro, “Microstructural and compositional change of NaOH-activated high calcium fly ash by incorporating Na-aluminate and co-existence of geopolymeric gel and C-S-H(I),” Cement Contrete Res. 42(5), 673-685 (2012). (doi:10.1016/j.cemconres.2012.02.002) 12.2.2

23. Wang, Y., J.E. Panzik, B. Kiefer, and K.M. Lee, “Crystal structure of graphite under room-temperature compression and decompression,” Scientific Reports 2, 520 (2012). (doi:10.1038/srep00520) 12.2.2

24. Xie, M., R. Mohammadi, Z. Mao, M.M. Armentrout, A. Kavner, R.B. Kaner, and S. Tolbert, “Exploring the high-pressure behavior of superhard tungsten tetraboride,” Physical Review B 85(6), 064118 (2012). (doi:10.1103/PhysRevB.85.064118) 12.2.2

25. Yan, J., B. Chen, S.V. Raju, B.K. Godwal, A.A. MacDowell, J. Knight, H. Ma, and Q. Williams, “HgO at high pressures: The transition to the NaCl structure (HgO-III) and the equation of state of tetragonal HgO-II,” Physics and Chemistry of Minerals 39, 269-275 (2012). (doi:10.1007/s00269-012-0483-2) 12.2.2

2011 publications (21)

1. Arielly, R., W.M. Xu, E. Greenberg, G. Rozenberg, M.P. Pasternak, G. Garbarino, S.M. Clark, and R. Jeanloz, “Intriguing sequence of GaFeO3 structures and electronic states to 70 GPa,” Physical Review B 84(9), 094109 (2011). (doi:10.1103/PhysRevB.84.094109) 12.2.2

2. Armentrout, M.M., and A. Kavner, “High pressure, high temperature equation of state for Fe(2)SiO(4) ringwoodite and implications for the Earth's transition zone,” Geophys. Res. Lett. 38, L08309 (2011). (doi:10.1029/2011GL046949) 12.2.2

3. Chen, Q., T.-W. Huang, M. Baldini, A. Hushur, V. Pomjakushin, S.M. Clark, W.L. Mao, M.H. Manghnani, A. Braun, and T. Graule, “Effect of Compressive Strain on the Raman Modes of the Dry and Hydrated BaCe(0.8)Y(0.2)O(3) Proton Conductor,” Journal of Physical Chemistry C 115(48), 24021-24027 (2011). (doi:10.1021/jp208525j) 12.2.2

4. Ciezak, J.A., “The High-Pressure Characterization of Energetic Materials: 1,4-Dimethyl-5-Aminotetrazolium 5-Nitrotetrazolate,” Propellants, Explosives, Pyrotechnics 36(5), 446-450 (2011). (doi:10.1002/prep.201100031) 12.2.2

5. Friedrich, A., B. Winkler, E.A. Juarez-Arellano, and L. Bayarjargal, “Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations,” Materials 4(10), 1648-1692 (2011). (doi:10.3390/ma4101648) 12.2.2

6. Gleason, A.E., H.K. Marquardt, B. Chen, S. Speziale, J. Wu, and R. Jeanloz, “Anomalous sound velocities in polycrystalline MgO under non-hydrostatic compression,” Geophys. Res. Lett. 38, L03304 (2011). (doi:10.1029/2010GL045860) 12.2.2

7. Hanna, G.Joseph., S.Tesfai. Teklemichael, M.D. McCluskey, L. Bergman, and J. Huso, “Equations of state for ZnO and MgZnO by high pressure x-ray diffraction,” J. Appl. Phys. 110(7), 073511 (2011). (doi:10.1063/1.3644969) 12.2.2

8. Kalkan, B., S. Sen, and S.M. Clark, “Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3phase change materials,” The Journal of Chemical Physics 135(12), 124510 (2011). (doi:10.1063/1.3643327) 12.2.2

9. Kalkan, B., S. Sen, B.G. Aitken, S.V. Raju, and S.M. Clark, “Negative P-T slopes characterize phase change processes: Case of the Ge(1)Sb(2)Te(4) phase change alloy,” Physical Review B 84(1), 014202 (2011). (doi:10.1103/PhysRevB.84.014202) 12.2.2

10. Lin, Y., Y. Yang, H. Ma, and W.L. Mao, “Compressional Behavior of Bulk and Nanorod LiMn2O4 under Nonhydrostatic Stress,” Journal of Physical Chemistry C 115(20), 9844-9849 (2011). (doi:10.1021/jp112289h) 12.2.2

11. Marquardt, H.K., A.E. Gleason, K. Marquardt, S. Speziale, L. Miyagi, G. Neusser, H. Wenk, and R. Jeanloz, “Elastic properties of MgO nanocrystals and grain boundaries at high pressures by Brillouin scattering,” Physical Review B 84, 064131 (2011). (doi:10.1103/PhysRevB.84.064131) 12.2.2

12. Miyagi, L., S. Stackhouse, H. Wenk, B. Militzer, and W.Jane. Kanitpanyacharoen, “The enigma of post-perovskite anisotropy: deformation versus transformation textures,” Physics and Chemistry of Minerals 38(9), 665-678 (2011). (doi:10.1007/s00269-011-0439-y) 12.2.2

13. Mohammadi, R., A.T. Lech, M. Xie, B.E. Weaver, M. Yeung, S. Tolbert, and R.B. Kaner, “Tungsten tetraboride, an inexpensive superhard material,” Proceedings of the National Academy of Sciences 108(27), 10958-10962 (2011). (doi:10.1073/pnas.1102636108) 12.2.2

14. Moon, J., J. Oh, M. Balonis, F. Glasser, S.M. Clark, and P. Monteiro, “Pressure induced reactions amongst calcium aluminate hydrate phases,” Cement Contrete Res. 41(6), 571-578 (2011). (doi:10.1016/j.cemconres.2011.02.004) 12.2.2

15. Oh, J., S.M. Clark, and P.M. Monteiro, “Determination of the bul modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction,” Cement and Concrete Composites 33(10), 1014-1019 (2011). (doi:10.1016/j.cemconcomp.2011.05.002) 12.2.2

16. Oh, J.E., S.M. Clark, and P.J. Monteiro, “Does the Al substitution in C-S-H(I) change its mechanical property? ,” Cement Contrete Res. 41(1), 102-106 (2011). (doi:10.1016/j.cemconres.2010.09.010) 12.2.2

17. Oh, J.E., J. Moon, M. Mancio, S.M. Clark, and P.J. Monteiro, “Bulk modulus of basic sodalite, Na8[AlSiO4]6(OH)2¬∑2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers,” Cement Contrete Res. 41(1), 107-112 (2011). (doi:10.1016/j.cemconres.2010.09.012) 12.2.2

18. Rademacher, N., L. Bayarjargal, A. Friedrich, W.W. Morgenroth, M. Avalos-Borja, S.C. Vogel, T. Proffen, and B. Winkler, “Decomposition of W(CO)6 at high pressures and temperatures,” J. Appl. Crystallogr. 44( ), 820-830 (2011). (doi:10.1107/S0021889811021285) 12.2.2

19. Raju, S.V., J... Zaug, B. Chen, J. Yan, J.W. Knight, R. Jeanloz, and S.M. Clark, “Determination of the variation of the fluorescence line positions of ruby, strontium tetraborate, alexandrite, and samarium-doped yttrium aluminum garnet with pressure and temperature,” J. Appl. Phys. 110(2), 023521-023528 (2011). (doi:10.1063/1.3608167) 12.2.2

20. Scott, P.R., A.E. Midgley, O. Musaev, D.V. Muthu, S. Singh, R. Suryanarayanan, A. Revcolevschi, A. Sood, and M.B. Kruger, “High-pressure synchrotron X-ray diffraction study of the pyrochlores: Ho2Ti2O7, Y2Ti2O7 and Tb2Ti2O7,” High Pressure Research 31(1), 219-227 (2011). (doi:10.1080/08957959.2010.548333) 12.2.2

21. Yan, J., B. Chen, S. Raju, J. Knight, and B.K. Godwal, “Investigation of phase transition of mercury decomposed from mercury oxide up to 20GPa,” High Pressure Research, 1 (2011). (doi:10.1080/08957959.2011.610317) 12.2.2

2010 publications (24)

1. Al-Khatatbeh, Y., B. Kiefer, and K.M. Lee, “Phase relations and hardness trends of ZrO2 phases at high pressure ,” Physical Review B 81(21), 214102 (2010). (doi:10.1103/PhysRevB.81.214102) 12.2.2

2. Al-Khatatbeh, Y., K.M. Lee, and B. Kiefer, “Phase diagram up to 105 GPa and mechanical strength of HfO2,” Physical Review B 82(14), 144106 (2010). (doi:10.1103/PhysRevB.82.144106) 12.2.2

3. Armentrout, M.M., and A. Kavner, “Incompressibility of osmium metal at high pressures and temperatures,” J. Appl. Phys. 107(9), 093528 (2010). (doi:10.1063/1.3369283) 12.2.2

4. Chen, B., A.E. Gleason, J.Y. Yan, K.J. Koski, S.n. Clark, and R. Jeanloz, “Elasticity, strength, and refractive index of argon at high pressures,” Physical Review B 81(14), 144110 (2010). (doi:10.1103/PhysRevB.81.144110) 12.2.2

5. Clark, S.M., and J. Zaug, “Compressibility of cubic white, orthorhombic black, rhombohedral black,and simple cubic black phosphorus,” Physical Review B 82(13), 134111 (2010). (doi:10.1103/PhysRevB.82.134111) 12.2.2

6. Friedrich, A., B. Winkler, L. Bayarjargal, E.A. Juarez-Arellano, W.W. Morgenroth, J. Biehler, F. Schroeder, J. Yan, and S.M. Clark, “In situ observation of the reaction of tantalum with nitrogen in a laser heated diamond anvil cell,” J. Alloys Cmpd. 502, 5-12 (2010). (doi:10.1016/j.jallcom.2010.04.113) 12.2.2

7. Friedrich, A., B. Winkler, L. Bayarjargal, W.W. Morgenroth, E.A. Juarez-Arellano, V. Milman, K. Refson, M. Kunz, and K. Chen, “Novel Rhenium Nitrides,” Physical Review Letters 105, 085504 (2010). (doi:10.1103/PhysRevLett.105.085504) 12.2.2, 12.3.2

8. Friedrich, A., B. Winkler, K. Refson, and V. Milman, “Vibrational properties of Re3N from experiment and theory,” Physical Review B 82(22), 224106 (2010). (doi:10.1103/PhysRevB.82.224106) 12.2.2

9. Godwal, B.K., S. Speziale, M. Voltolini, H. Wenk, and R. Jeanloz, “Postcotunnite phase of the intermetallic compound AuIn2 at high pressure,” Physical Review B 82(6), 064112 (2010). (doi:10.1103/PhysRevB.82.064112) 12.2.2

10. Godwal, B.K., S. Speciale, S.M. Clark, J. Yan, and R. Jeanloz, “High pressure equation of state studies using methanol-ethanol-waterand argon as pressure media,” Journal of Physics and Chemistry of Solids 71(8), 1059-1064 (2010). (doi:10.1016/j.jpcs.2010.03.006) 12.2.2

11. Grocholski, B.M., S. Speziale, and R. Jeanloz, “Equation of state, phase stability, and amorphization of SnI4 at high pressure and temperature,” Physical Review B 81, 094101 (2010). (doi:10.1103/PhysRevB.81.094101) 12.2.2

12. Hanna, G.Joseph., and M.D. McCluskey, “Equation of state and refractive index of argon at high pressure by confocal microscopy,” Physical Review B 81(13), 132104 (2010). (doi:10.1103/PhysRevB.81.132104) 12.2.2

13. Hou, D..., Y. Ma, J. Du, J. Yan, C. Ji, and H. Zhu, “High pressure X-ray diffraction study of ReS2,” Journal of Physics and Chemistry of Solids 71(11), 1571-1575 (2010). (doi:10.1016/j.jpcs.2010.08.002) 12.2.2

14. Juarez-Arellano, E.A., B. Winkler, L. Bayarjargal, A. Friedrich, V. Milman, D.R. Kammler, S.M. Clark, J. Yan, M. Koch-Müller, F. Schröder, and M. Avalos-Borja, “Formation of scandium carbides and scandium oxycarbide from the elements at high-(P,T) conditions,” J. Solid State Chem. 183, 975-983 (2010). (doi:10.1016/j.jssc.2010.02.019) 12.2.2

15. Lord, O., M.J. Walter, D.P. Dobson, L.S. Armstrong, S.M. Clark, and A. Kleppe, “The FeSi phase diagram to 150 GPa,” J Geophys Res Solid Earth 115, B06208 (2010). (doi:10.1029/2009JB006528) 12.2.2

16. Miyagi, L., W.Jane. Kanitpanyacharoen, P.M. Kaercher, K.M. Lee, and H. Wenk, “Slip Systems in MgSiO3 Post-Perovskite: Implications for D'' Anisotropy,” Science 329(5999), 1639 (2010). (doi:10.1126/science.1192465) 12.2.2

17. Oh, J.E., P.J. Monteiro, S.S. Jun, S.S. Choi, and S.M. Clark, “The evolution of strength and crystalline phases for alkali activated ground blast furnace slag and fly ash based geopolymers ,” Cement Contrete Res. 40(2), 189-196 (2010). (doi:10.1016/j.cemconres.2009.10.010) 12.2.2

18. Veprek, S., S.M. Clark, and S.G. Prilliman, “Elastic moduli of nc-TiN/a-Si3N4 nanocomposites: Compressible, yet superhard ,” Journal of Physics and Chemistry of Solids 71(8), 1175-1178 (2010). (doi:10.1016/j.jpcs.2010.03.029) 12.2.2

19. Wicks, J.K., J.M. Jackson, and W. Sturhahn, “Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region,” Geophys. Res. Lett. 37, L15304 (2010). (doi:10.1029/2010GL043689) 12.2.2

20. Winkler, B., E.A. Juarez-Arellano, A. Friedrich, L. Bayarjargal, F. Schroder, J. Biehler, V. Milman, S.M. Clark, and J. Yan, “In situ synchrotron X-ray diffraction study of the formation of TaB2 from the elements in a laser heated diamond anvil cell,” Solid State Sciences 12, 2059-2064 (2010). (doi:10.1016/j.solidstatesciences.2010.08.027) 12.2.2

21. Yan, J., J. Knight, M. Kunz, S. Raju, B. Chen, A.E. Gleason, B.K. Godwal, Z.M. Geballe, R. Jeanloz, and S.M. Clark, “The resistive-heating characterization of laser heating system and LaB6 characterization of X-ray diffraction of beamline 12.2.2 at advanced light source,” Journal of Physics and Chemistry of Solids 71, 1179-1182 (2010). (doi:10.1016/j.jpcs.2010.03.030) 12.2.2

22. Zhang, H., B. Chen, and J. Banfield, “Particle Size and pH Effects on Nanoparticle Dissolution,” Journal of Physical Chemistry C 114(35), 14876-14884 (2010). (doi:10.1021/jp1060842) 1.4, 12.2.2

23. Zhang, H., B.n. Chen, Y.g. Ren, G. Waychunas, and J. Banfield, “Response of nanoparticle structure to different types of surface environments:Wide-angle x-ray scattering and molecular dynamics simulations,” Physical Review B 81(12), 125444 (2010). (doi:10.1103/PhysRevB.81.125444) 12.2.2

24. Zhuravlev, K., J.M. Jackson, A.S. Wolf, J.K. Wicks, J. Yan, and S.M. Clark, “Isothermal Compression behavior of (Mg,Fe)O using neon as a pressure medium,” Physics and Chemistry of Minerals 37(7), 465 -474 (2010). (doi:10.1007/s00269-009-0347-6) 12.2.2

2009 publications (17)

1. Aguado, F., F. Rodriguez, and S. Redfern, “A-cation effect on the compressibility of ACoF(3) perovskites,” High Pressure Research 29(4), 525-529 (2009). (doi:10.1080/08957950903468041) 12.2.2

2. Al-Khatatbeh, Y., K.M. Lee, and B. Kiefer, “High-pressure behavior of TiO2 as determined by experiment and theory,” Physical Review B 79, 134114 (2009). (doi:10.1103/PhysRevB.79.134114) 12.2.2

3. Chen, B., H.Z. Zhang, K.A. Dunphy-Guzman, D.D. Spagnoli, M.B. Kruger, D.S. Muthu, M. Kunz, S. Fakra, J.Z. Hu, Q.Z. Guo, and J. Banfield, “Size-dependent elasticity of nanocrystalline titania,” Physical Review B 79(12), 125406 (2009). (doi:10.1103/PhysRevB.79.125406) 11.3.1, 12.2.2

4. Choi, C.L., K.J. Koski, S. Sivasankar, and A.P. Alivisatos, “Strain-Dependent Photoluminescence Behaviour of CdSe/CdS Nanocrystals with Spherical, Linear and Branched Topologies,” Nano Letters 9(10), 3544-3549 (2009). (doi:10.1021/nl9017572) 12.2.2

5. Gleason, A.E., B. Chen, and R. Jeanloz, “Grain-boundary effects in Brillouin scattering at ambient and high pressure,” Geophys. Res. Lett. 36, 23-25 (2009). (doi:10.1029/2009GL040420) 12.2.2

6. Godwal, B.K., E.A. Petruska, S. Speziale, J. Yan, S.M. Clark, M.B. Kruger, and R. Jeanloz, “High-pressure Raman and x-ray diffraction studies on LaB6 ,” Physical Review B 80(17), 172104 (2009). (doi:10.1103/PhysRevB.80.172104) 12.2.2

7. Grant, C.D., J.Charles. Crowhurst, T. Arsenlis, E.M. Bringa, Y.M. Wang, J.A. Hawreliak, P.J. Pauzauskie, and S.M. Clark, “X-ray diffraction of electrodeposited nanocrystalline Ni under high pressure,” J. Appl. Phys. 105, 084311 (2009). (doi:10.1063/1.3100189) 12.2.2

8. Juarez-Arellano, E.A., B. Winkler, A. Friedrich, L. Bayarjarga, V. Milman, J. Yan, and S.M. Clark, “Stability field of the high-(P,T) Re2C phase and properties of an analogous osmium carbide phase ,” J. Alloys Cmpd. 481, 577-581 (2009). (doi:10.1016/j.jallcom.2009.03.029) 12.2.2

9. Levine, J., S. Tolbert, and R.d. Kaner, “Advancements in the Search for Superhard Ultra-Incompressible Metal Borides,” Advanced Functional Materials 19(22), 3519-3533 (2009). (doi:10.1002/adfm.200901257) 12.2.2

10. Lord, O., M.J. Walter, R. Dasgupta, D. Walker, and S.M. Clark, “Melting in the Fe-C system to 70 GPa ,” Earth and Planetary Science Letters 284, 157-167 (2009). (doi:10.1016/j.epsl.2009.04.017) 12.2.2

11. Musaev, O., A.E. Midgley, J.M. Wrobel, J. Yan, and M.B. Kruger, “Fractal character of titania nanoparticles formed by laser ablation,” J. Appl. Phys. 106(5), 054306-1-054306-3 (2009). (doi:10.1063/1.3208058) 12.2.2

12. Walker, D., O. Lord, M.J. Walter, and S.M. Clark, “X-ray Absorption Contrast Images of Binary Chemical Reactions,” Chem. Geol. 260, 211-220 (2009). (doi:10.1016/j.chemgeo.2008.12.025) 12.2.2

13. Walter, M., O. Lord, G. Hellfrich, and D. Walker, “Iron lite: Experimental constraints on the composition of Earth's core,” Geochim. Cosmochim. Acta 73, A1405-A1405 (2009). (doi:10.1016/B0-08-043751-6/02014-4) 12.2.2

14. Weinberger, M., J.B. Levine, H.Y. Chung, R.W. Cumberland, H.I. Rasool, J.M. Yang, R.B. Kaner, and S. Tolbert, “Incompressibility and Hardness of Solid Solution Transition Metal Diborides: Os1-xRuxB2,” Chem. Mater. 21(9), 1915-1921 (2009). (doi:10.1021/cm900211v) 12.2.2

15. Winkler, B., E.A. Juarez-Arellano, A. Friedrich, L. Bayarjargal, J. Yan, and S.M. Clark, “Reaction of titanium with carbon in a laser heated diamond anvil celland reevaluation of a proposed pressure-induced structural phasetransition of TiC,” J. Alloys Cmpd. 478, 392-397 (2009). (doi:10.1016/j.jallcom.2008.11.020) 12.2.2

16. Zhang, H.Z., B.n. Chen, and J. Banfield, “The size dependence of the surface free energy of titania nanocrystals,” Phys. Chem. Chem. Phys. 11(14), 2553-2558 (2009). (doi: 10.1039/b819623k) 12.2.2, 11.3.1

17. Zhuravlev, K., W. Hlaing Oo, M.D. McCluskey, J. Huso, J.L. Morrison, and L. Bergman, “X-ray diffraction of MgxZn1-xO and ZnO nanocrystals under high pressure,” J. Appl. Phys. 106(1), 013511 (2009). (doi:10.1063/1.3159036) 12.2.2

2008 publications (2017)

1. Aguado, F., F. Rodriguez, S. Hirai, J.N. Walsh, A. Lennie, and S. Redfern, “High-pressure behaviour of KMF3 perovskites,” High Pressure Research 28(4), 539-544 (2008). (doi:10.1080/08957950802576464) 12.2.2

2. Catalli, K.C., S.-H. Shim, and V. Prakapenka, “A crystalline-to-crystalline phase transition in Ca(OH)2 at 8 GPa and room temperature,” Geophys. Res. Lett. 35, L05312 (2008). (doi:10.1029/2007GL033062) 12.2.2

3. Clark, S.M., B. Colas, M. Kunz, S. Speziale, and P.M. Monteiro, “Effect of pressure on the crystal structure of ettringite,” Cement Contrete Res. 38(1), 19-26 (2008). (doi:10.1016/j.cemconres.2007.08.029) 12.2.2, 1.4.4

4. Clark, S.M., R.L. Jones, M. Jackson, C.B. Henderson, S.A. Parry, and B. Varney, “Development of a system for measuring the complex impedance ofborosilicate glasses at high pressures and temperatures: Application to thestudy of Li- and Na-doped borosilicate glasses,” Journal of Physics and Chemistry of Solids 69, 2168-2171 (2008). (doi:10.1016/j.jpcs.2008.03.024) 12.2.2

5. Gleason, A.E., S.A. Parry, A.R. Pawley, R. Jeanloz, and S.M. Clark, “Pressure-temperature studies of talc plus water using x-ray diffraction,” Am. Mineral. 93(7), 1043-1050 (2008). (doi:10.2138/am.2008.2742) 12.2.2

6. Godwal, B.K., S. Speziale, S.M. Clark, J. Yan, and R. Jeanloz, “Electronic Phase Transition and Amorphization in AuIn2 at High Pressure,” Physical Review B 78, 094107 (2008). (doi:10.1103/PhysRevB.78.094107) 12.2.2

7. Hustoft, J.W., K.C. Catalli, S.-H. Shim, A. Kubo, V. Prakapenka, and M. Kunz, “Equation of state of NaMgF3 postperovskite - implications for the seismic velocity changes in the D'' region,” Geophys. Res. Lett. 35(10), L10309 (2008). (doi:10.1029/2008GL034042) 12.2.2

8. Koski, K.J., N.M. Kamp, R.K. Smith, M. Kunz, J.K. Knight, and A.P. Alivisatos, “Structural distortions in 5-10 nm silver nanoparticles under high pressure,” Physical Review B 78, 165410 (2008). (doi:10.1103/PhysRevB.78.165410) 12.2.2

9. Lundin, S., K.C. Catalli, J.D. Santillan, S.-H. Shim, V. Prakapenka, M. Kunz, and Y. Meng, “Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar,” Physics of the Earth and Planetary Interiors 168, 97-102 (2008). (doi:10.1016/j.pepi.2008.05.002) 12.2.2

10. Miyagi, L., M. Kunz, J. Knight, J. Masiatka, M. Voltolini, and H. Wenk, “In-situ Phase Transformation and Deformation of Iron at High Pressure and Temperature,” J. Appl. Phys. 104(10), 103510 (2008). (doi:10.1063/1.3008035) 12.2.2

11. Muthu, D.V., B. Chen, B.A. Cook, and M.B. Kruger, “Effects of sample preparation on the mechanical properties of AlMgB14,” High Pressure Research 28(1), 63-68 (2008). (doi:10.1080/08957950701846893) 12.2.2

12. Shim, S.-H., K.C. Catalli, J.W. Hustoft, A. Kubo, V. Prakapenka, W.A. Caldwell, and M. Kunz, “Crystal structure and thermoelastic properties of (Mg0.91Fe0.09)SiO3 Postperovskite up to 135 GPa and 2700 K,” Proceedings of the National Academy of Sciences 105, 7382-7386 (2008). (doi:10.1073/pnas.0711174105) 12.2.2

13. Shim, S.-H., “The postperovskite transition,” Applied Physics Letters 36(10), 569-599 (2008). (doi:10.1146/annurev.earth.36.031207.124309) 12.2.2

14. Speziale, S., R. Jeanloz, S.M. Clark, S. Meenakshy, V. Vijayakumar, A.K. Verma, R.S. Rao, and B.K. Godwal, “Axial ratio anomalies and electronic topological transitions in Cd0.80Hg0.20 at high pressures,” Journal of Physics and Chemistry of Solids 69, 2325-2331 (2008). (doi:10.1016/j.jpcs.2008.04.028) 12.2.2

15. Walter, M.J., G.P. Bulanova, L.S. Armstrong, S. Keshav, J.D. Blundy, G. Gudfinnsson, O. Lord, A.R. Lennie, S.M. Clark, C.B. Smith, and L. Gobbo, “Primary carbonatite melt from deeply subducted oceanic crust,” Nature 454, 622-626 (2008). (doi:10.1038/nature07132) 12.2.2

16. Yan, J., P.D. Adams, R.J. Angel, N.L. Ross, M. Rivers, J. Parise, and S.M. Clark, “The Development of an Automated Data Analysis System for powder diffraction data collected using an area detector,” High Pressure Research 28, 293-298 (2008). (doi:10.1080/08957950802258006) 12.2.2

17. Zaug, J.M., A.K. Soper, and S.M. Clark, “Pressure-dependent structures of amorphous red phosphorus and the origin of the first sharp diffraction peaks,” Nature Materials 7(11), 890-899 (2008). (doi:10.1038/nmat2290) 12.2.2

2007 publications (4)

1. Caldwell, W.A., M. Kunz, R. Celestre, E. Domning, M.J. Walter, D. Walker, J.M. Glossinger, A.A. MacDowell, H.A. Padmore, R. Jeanloz, and S.M. Clark, “Laser Heated Diamond Anvil Cell at the Advanced Light Source Beamline 12.2.2,” Nucl. Instrum. Methods Phys. Res., Sect. A 582(1), 221-225 (2007). (doi:10.1016/j.nima.2007.08.113) 12.2.2

2. Chung, H.Y., M. Weinberger, J.B. Levine, A. Kavner, J.M. Yang, S. Tolbert, and R.B. Kaner, “Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure,” Science 316(5823), 436-439 (2007). (doi:10.1126/science.1139322) 12.2.2

3. Kunz, M., W.A. Caldwell, L. Miyagi, and H. Wenk, “In situ laser heating and radial synchrotron X-ray diffraction in a diamond anvil cell ,” Rev. Sci. Instrum. 78, 063907-6-063907-6 (2007). (doi:10.1063/1.2749443) 12.2.2

4. Speziale, S., V.E. Lee, S.M. Clark, J.F. Lin, M.P. Pasternak, and R. Jeanloz, “Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowustites and implications for the seismological properties of the Earths lower mantle,” J Geophys Res Solid Earth 112, B10212 (2007). (doi:10.1029/2006JB004730) 12.2.2

2006 publications (7)

1. Clark, S.M., S. Speciale, R. Jeanloz, M. Kunz, W.A. Caldwell, M. Walter, and D. Walker, “Using advanced accelerators to understand the lower mantle and beyond,” Geochim. Cosmochim. Acta 70, A104 (2006). (doi:10.1016/j.gca.2006.06.121) 12.2.2

2. Gilbert, B., H. Zhang, B. Chen, M. Kunz, F. Huang, and J. Banfield, “Compressibility of zinc sulfide nanoparticles,” Physical Review B 74, 115405-1-115405-7 (2006). (doi:10.1103/PhysRevB.74.115405) 11.3.1, 12.2.2

3. Prilliman, S.G., S.M. Clark, A.P. Alivisatos, P. Karvankova, and S. Veprek, “Strain and deforemation in ultra-hard nanocomposites nc-TiN/a-BN under hydrostatic pressure,” Materials Science and Engineering A 437(2), 379-387 (2006). (doi:10.1016/j.msea.2006.07.126) 12.2.2

4. Speziale, S., I. Lonardelli, L. Miyagi, J. Pehl, C.E. Tommaseo, and H. Wenk, “Deformation experiments in the diamond-anvil cell: texture in copper to 30 Gpa,” Journal of Physics: Condensed Matter 18(25), S1007-S1020 (2006). (doi:10.1088/0953-8984/18/25/S08) 12.2.2, 11.3.1

5. Tommaseo, C.E., J. DeVine, S. Merkel, S. Speziale, and H. Wenk, “Texture development and elastic stress in magnesiowuestite at high pressure,” Physics and Chemistry of Minerals 33(2), 84-97 (2006). (doi:10.1007/s00269-005-0054-x) 12.2.2

6. Walter, M.J., R.G. Tronnes, L.S. Armstrong, O. Lord, W.A. Caldwell, and S.M. Clark, “Subsolidus phase relations and perovskite compressibility in the system MgO-AlO1.5-SiO2 with implications for Earth's lower mantle,” Earth and Planetary Science Letters 248, 77-89 (2006). (doi:10.1016/j.epsl.2006.05.017) 12.2.2

7. Wenk, H., I. Lonardelli, S. Merkel, L. Miyagi, J. Pehl, S. Speziale, and C.E. Tommaseo, “Quantitative Rietveld texture analysis of CaSiO3 perovskite deformed in a diamond anvil cell ,” Journal of Physics: Condensed Matter 18(25), S933-S947 (2006). (doi:0.1088/0953-8984/18/25/S07) 12.2.2, 11.3.1

2005 publications (8)

1. Clark, S.M., and R. Jeanloz, “A new paradigm to extend diffraction measurements beyond the megabar regime,” J. Synchrotron Radiat. 12, 632-636 (2005). (doi:10.1107/S0909049505021084) 12.2.2

2. Clark, S.M., S.G. Prilliman, C.K. Erdonmez, and A.P. Alivisatos, “Size dependence of the pressure-induced gamma to alpha structural transition in iron oxide nanocrystals,” Nanotechnology 16(12), 2813-2818 (2005). (doi:10.1088/0957-4484/16/12/013) 12.2.2, 11.3.1, 7.3.3.1

3. Cumberland, R.W., M. Weinberger, J.J. Gilman, S.M. Clark, S. Tolbert, and R.B. Kaner, “Osmium diboride, an ultra-incompressible, hard material,” Journal of the American Chemical Society 127(20), 7264-7265 (2005). (doi:10.1021/ja043806y) 12.2.2, 11.3.1, 7.3.3.2

4. Kaner, R.B., J.J. Gilman, and S. Tolbert, “Designing Superhard Materials,” Science 308(5726), 1268-1269 (2005). (doi:10.1126/science.1109830) 12.2.2, 11.3.1

5. Kunz, M., A.A. MacDowell, W.A. Caldwell, R. Celestre, E. Domning, R.M. Duarte, A.E. Gleason, J.M. Glossinger, N.M. Kelez, D. Plate, T. Yu, J.M. Zuag, H.A. Padmore, R. Jeanloz, A.P. Alivisatos, S.M. Clark, et al ., “A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source,” J. Synchrotron Radiat. 12(Part 5), 650-658 (2005). (doi:10.1107/S0909049505020959) 12.2.2

6. Speziale, S., A.A. Milner, V.E. Lee, S.M. Clark, M.P. Pasternak, and R. Jeanloz, “Iron Spin Transition in Earth's Mantle,” Proceedings of the National Academy of Sciences 102(50), 17918-17922 (2005). (doi:10.1073/pnas.0508919102) 12.2.2

7. Walker, R.J., and D. Walker, “Does the core leak?,” Eos, T. Am. Geophys. Un. 86(25), 237-244 (2005). (doi:10.1029/2005EO250001) 12.2.2

8. Walker, D., “Core-mantle chemical issues,” Canadian Mineralogist 43(pt 5), 1553-1564 (2005). (doi:10.2113/gscanmin.43.5.1553) 12.2.2